Nitrogen trifluoride is the inorganic compound with the formula NF3. This nitrogen-fluorine compound is a colorless, odorless, nonflammable gas. It finds increasing use as an etchant in microelectronics.
(If you mean by a gas of some sort)
The correct answer is option A.
All the particles carry the same charge, which could be either positive or negative.
All the particles of substance X will have same charge on its surface, which is balanced by the oppositely charged ions in the water.
For example, soap solution (sodium palmitate) dissociates into ions:
C₁₅H₁₁COONa --> C₁₅H₁₁COO⁻ + Na⁺
The cations (Na⁺) passes into the water while the anions (C₁₅H₁₁COO⁻) form aggregates or colloids.
Answer:
The combustion of 59.7 grams of methane releases 3320.81 kilojoules of energy
Explanation:
Given;
CH₄ + 2O₂ → CO₂ + 2H₂O, ΔH = -890 kJ/mol
From the combustion reaction above, it can be observed that;
1 mole of methane (CH₄) released 890 kilojoules of energy.
Now, we convert 59.7 grams of methane to moles
CH₄ = 12 + (1x4) = 16 g/mol
59.7 g of CH₄ 
1 mole of methane (CH₄) released 890 kilojoules of energy
3.73125 moles of methane (CH₄) will release ?
= 3.73125 moles x -890 kJ/mol
= -3320.81 kJ
Therefore, the combustion of 59.7 grams of methane releases 3320.81 kilojoules of energy
0.250 L*3M=0.250 L*3mol/L= 0.750 mol
Answer:
Pressure, P = 67.57 atm
Explanation:
<u>Given the following data;</u>
- Volume = 0.245 L
- Number of moles = 0.467 moles
- Temperature = 159°C
- Ideal gas constant, R = 0.08206 L·atm/mol·K
<u>Conversion:</u>
We would convert the value of the temperature in Celsius to Kelvin.
T = 273 + °C
T = 273 + 159
T = 432 Kelvin
To find the pressure of the gas, we would use the ideal gas law;
PV = nRT
Where;
- P is the pressure.
- V is the volume.
- n is the number of moles of substance.
- R is the ideal gas constant.
- T is the temperature.
Making P the subject of formula, we have;

Substituting into the formula, we have;


<em>Pressure, P = 67.57 atm</em>