Answer:
a)Q=71.4 μ C
b)ΔV' = 10.2 V
Explanation:
Given that
C ₁= 8.7 μF
C₂ = 8.2 μF
C₃ = 4.1 μF
The potential difference of the battery, ΔV= 34 V
When connected in series
1/C = 1/C ₁ + 1/C₂ + 1/C₃
1/ C= 1/8.4 +1 / 8.4 + 1/4.2
C=2.1 μF
As we know that when capacitor are connected in series then they have same charge,Q
Q= C ΔV
Q= 2.1 x 34 μ C
Q=71.4 μ C
b)
As we know that when capacitor are connected in parallel then they have same voltage difference.
Q'= C' ΔV'
C'= C ₁+C₂+C₃ (For parallel connection)
C'= 8.4 + 8.4 + 4.2 μF
C'=21 μF
Q'= C' ΔV'
Q'=3 Q
3 x 71.4= 21 ΔV'
ΔV' = 10.2 V
True! The mechanical advantage of the wheel and axle is equal to the ratio of the radius of the wheel over the radius of the axle.
The equation Q=CV (Charge = product of Capacitance and potential difference) tells us that the maximum charge that can be stored on a capacitor is equal to the product of it's capacitance and the potential difference across it. In this case the potential difference across the capacitor will be 12.0V (assuming circuit resistance is negligable) and it has a capacitance of 18.0μf or 18.0x10^-6f, therefore charge equals (18.0x10^-6)x12=2.16x10^-4C (Coulombs).
Answer:
2,25 g/cm3
Explanation:
Hi, you have to know one thing for this.. Density = mass/Volume,
When you have the loaf of bread with 3100 cm3 and a density of 0.90 g/cm3, the mass of that bread is 2790 g because of if you isolate the variable mass from the equation you get.. mass= density x volume
Later, have on account the mass never changes, so you crush the bread and the mass is the same.. so when you have the mashed bread.. you know that the mass is 2790 g and the volume of the bag is 1240 cm3, so you apply the main equation.... density=2790 g / 1240 cm3 , so density = 2,25 g/cm3
Force = (mass) · (acceleration)
= (1,000 kg) · (9.8 m/s²)
= 9,800 newtons
Why are you still having a problem with F = M · a ?