Answer:
1.86 m
Explanation:
First, find the time it takes to travel the horizontal distance. Given:
Δx = 52 m
v₀ = 26 m/s cos 31.5° ≈ 22.2 m/s
a = 0 m/s²
Find: t
Δx = v₀ t + ½ at²
52 m = (22.2 m/s) t + ½ (0 m/s²) t²
t = 2.35 s
Next, find the vertical displacement. Given:
v₀ = 26 m/s sin 31.5° ≈ 13.6 m/s
a = -9.8 m/s²
t = 2.35 s
Find: Δy
Δy = v₀ t + ½ at²
Δy = (13.6 m/s) (2.35 s) + ½ (-9.8 m/s²) (2.35 s)²
Δy = 4.91 m
The distance between the ball and the crossbar is:
4.91 m − 3.05 m = 1.86 m
Answer:
a) 1.20227 seconds
b) 0.98674 m
c) 7.3942875 m/s
Explanation:
t = Time taken
u = Initial velocity = 4.4 m/s
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.81 m/s²


b) Her highest height above the board is 0.98674 m
Total height she would fall is 0.98674+1.8 = 2.78674 m

a) Her feet are in the air for 0.75375+0.44852 = 1.20227 seconds

c) Her velocity when her feet hit the water is 7.3942875 m/s
Chattanooga - Chatype, London - Johnston, Berlin - BMF Change, Milan - Milano City, Eindhoven - Eindhoven, Stockholm - Stockholm Type, Minneapolis, and St. Paul - Twin.
KE = 2000 J
Explanation:
KE = (1/2)mv^2
= (1/2)(0.100 kg)(200 m/s)^2
= 2000 J
Answer:
Milk
Hope this helps,if not sorry