1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zysi [14]
3 years ago
9

I NEED HELP PLEASE, THANKS! :)

Physics
1 answer:
Rainbow [258]3 years ago
4 0

Explanation:

Usually when we think of waves, we think of transverse waves.  These are waves where points move up and down perpendicular to the motion of the wave.  Examples include water waves, whipping a rope, or even doing the "wave" in a crowd.  You can think of these as "two dimensional" waves.

Longitudinal waves are waves where points move left or right, parallel to the motion of the wave.  In other words, there is compression and expansion of the medium.  Examples include sound waves, or pulses in a slinky.

You might be interested in
You are performing an experiment that requires the highest possible energy density in the interior of a very long solenoid. Whic
Alinara [238K]

Answer:

b. increasing the number of turns per unit length on the solenoid

e. increasing the current in the solenoid

Explanation:

As we know that energy density depends on the strength of the magnetic field. The magnetic field strength depends on the no of turns of the solenoid and the current passing through it. The greater the number of turns per unit length, greater the current passing through it, more stronger the magnetic field is. As

B = μ₀nI

n = no of turns

I = current through the wire

So the right options are

b. increasing the number of turns per unit length on the solenoid

e. increasing the current in the solenoid

5 0
3 years ago
A 7750 kg space probe, moving nose-first toward Jupiter at 179 m/s relative to the Sun, fires its rocket engine, ejecting 72.0 k
Reika [66]

Answer:

179.47m/s

Explanation:

Using the law of conservation of momentum

m1u1 + m2u2 = (m1+m2)v

m1 and m2 are the masses

u1 and u2 are the initial velocities

v is the final velocity

Substitute

7750(179)+72(230) = (7750+72)v

1,387,250+16560 = 7822v

1,403,810 = 7822v

v = 1,403,810/7822

v= 179.47m/s

Hence the final velocity of the probe is 179.47m/s

7 0
2 years ago
The use of sound waves helps scientists find out how deep parts of the ocean are. The scientists do this by sending a sound wave
Scilla [17]
Dredging is what the inventor of this machine need to know while developing the machine.
Hope this helps!
4 0
2 years ago
How do you know about Black Holes?
kondaur [170]

Answer: From space/ astronauts

Explanation:

A black hole is a place in space where gravity pulls so much that even light can not get out. The gravity is so strong because matter has been squeezed into a tiny space. This can happen when a star is dying.

Because no light can get out, people can't see black holes. They are invisible. Space telescopes with special tools can help find black holes. The special tools can see how stars that are very close to black holes act differently than other stars.

6 0
3 years ago
Read 2 more answers
Show that rigid body rotation near the Galactic center is consistent with a spherically symmetric mass distribution of constant
irakobra [83]

To solve this problem we will use the concepts related to gravitational acceleration and centripetal acceleration. The equality between these two forces that maintains the balance will allow to determine how the rigid body is consistent with a spherically symmetric mass distribution of constant density. Let's start with the gravitational acceleration of the Star, which is

a_g = \frac{GM}{R^2}

Here

M = \text{Mass inside the Orbit of the star}

R = \text{Orbital radius}

G = \text{Universal Gravitational Constant}

Mass inside the orbit in terms of Volume and Density is

M =V \rho

Where,

V = Volume

\rho =Density

Now considering the volume of the star as a Sphere we have

V = \frac{4}{3} \pi R^3

Replacing at the previous equation we have,

M = (\frac{4}{3}\pi R^3)\rho

Now replacing the mass at the gravitational acceleration formula we have that

a_g = \frac{G}{R^2}(\frac{4}{3}\pi R^3)\rho

a_g = \frac{4}{3} G\pi R\rho

For a rotating star, the centripetal acceleration is caused by this gravitational acceleration.  So centripetal acceleration of the star is

a_c = \frac{4}{3} G\pi R\rho

At the same time the general expression for the centripetal acceleration is

a_c = \frac{\Theta^2}{R}

Where \Theta is the orbital velocity

Using this expression in the left hand side of the equation we have that

\frac{\Theta^2}{R} = \frac{4}{3}G\pi \rho R^2

\Theta = (\frac{4}{3}G\pi \rho R^2)^{1/2}

\Theta = (\frac{4}{3}G\pi \rho)^{1/2}R

Considering the constant values we have that

\Theta = \text{Constant} \times R

\Theta \propto R

As the orbital velocity is proportional to the orbital radius, it shows the rigid body rotation of stars near the galactic center.

So the rigid-body rotation near the galactic center is consistent with a spherically symmetric mass distribution of constant density

6 0
3 years ago
Other questions:
  • Mary travelled 70 miles/hour due north.
    11·2 answers
  • As you watch a surfer ride a wave toward the shoreline what is the shoreline
    5·2 answers
  • Will is a scientist. He’s designing a spacecraft that would allow people to land on Mars. Will’s mass on Earth is 75 kilograms.
    6·2 answers
  • Nitrogen at an initial state of 300 K, 150 kPa, and 0.2 m3is compressed slowly in an isothermal process to a final pressure of 8
    13·1 answer
  • Think of ways you control temperature to influence chemical changes during a typical day. (Hint: cooking, art class)
    12·1 answer
  • Which of these examples has the most kinetic energy?
    11·2 answers
  • The space shuttle orbits 340km above the surface of the earth.What is the gravitational force on a 9.0kg sphere inside the space
    14·1 answer
  • What are some applications of Kepler’s laws still in use today?
    14·2 answers
  • HELP PLZZZZZZ
    13·1 answer
  • Four ways to encourage immigrants positively
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!