Answer:
The average velocity is 7.5 km/h
Explanation:
Let's convert minutes to hours so our answer can be given in a common units of km/hour:
12 minutes = 12/60 hours = 0.2 hours
Now we estimate the average velocity calculating the distance travelled over the time it took:
1.5 / 0.2 km/h = 7.5 km/h
Answer: h = 3.34 m
Explanation:
If the hat is thrown straight up, then at its highest point it has no motion and no kinetic energy. All energy is potential energy
PE = mgh
h = PE/mg = 4.92 / (0.150(9.81)) = 3.34352... ≈3.34 m
Answer:
25000 V
Explanation:
The formula for potential is
V = Kq/r
Potential at B due to the charge placed at origin O
V1 = K q / OB

V1 = 10000 V
Potential at B due to the charge placed at A
V2 = K q / AB

V2 = 15000 V
Total potential at B
V = V1 + V2 = 10000 + 15000 = 25000 V
Answer:
Part a)

Part b)

Part c)
So from above discussion we have the result that energy loss will be more if the collision occurs with animal with more mass
Explanation:
Part a)
Let say the collision between Moose and the car is elastic collision
So here we can use momentum conservation


also by elastic collision condition we know that

now we have

now we have

Now loss in kinetic energy of the car is given as


so fractional loss in energy is given as



Part b)
Let say the collision between Camel and the car is elastic collision
So here we can use momentum conservation


also by elastic collision condition we know that

now we have

now we have

Now loss in kinetic energy of the car is given as


so fractional loss in energy is given as



Part c)
So from above discussion we have the result that energy loss will be more if the collision occurs with animal with more mass