Answer:
Explained
Explanation:
Dynamically continuous innovation:
- Falls in between continuous and discontinuous innovation.
-Changes in customer habits are not as large as in discontinuous innovation and not as negligeble as in continuous innovation.
best example can as simple as transformation in Television. New HD TVs have flat panels, wide screens and improved performance The Added features are considered dynamically improved.
Discontinuous innovation:
- discontinuous innovation comprise of new to world product only so they are discontinuous to every customer segment.
- these product are so fundamentally different from the the product that already exist that they reshape market and competition.
For example- the mobile and the internet technology are reshaping the market through regular innovation and change.
<span> Space satellites, laser beams, mirrors</span> are used to calculate the distance a continent has moved in a year.
Therefore, your correct answer would be "all of the above".
Answer:
Atom - the basic particle of matter
Density - calculated from measurements of mass and volume
Motion - calculated from measurements of distance and time
Energy - can change form and move matter
Matter - the scientific word for <em>stuff</em>
<em />
Hope this helps! Please mark brainliest if correct :D
Answer:
Nylon fibres
Explanation:
Nylon fibres are synthetic polymers made of repeating units linked by amide links. It is a thermoplastic silky material which can be remoulded in any shape.
Nylon fibres have the property of strong elastic and light in weight that is why used for making ropes, combat uniforms, and parachutes. Nylon Fibres are also lustrous and easy to wash so widely used in textile industry for making swimwear, track pants, shorts, and draperies.
Hence, the correct answer is "Nylon fibres".
Answer:
The maximum potential energy of the system is 0.2 J
Explanation:
Hi there!
When the spring is stretched, it acquires potential energy. When released, the potential energy is converted into kinetic energy. If there is no friction nor any dissipative forces, all the potential energy will be converted into kinetic energy according to the energy conservation theorem.
The equation of elastic potential energy (EPE) is the following:
EPE = 1/2 · k · x²
Where:
k = spring constant.
x = stretching distance.
The elastic potential energy is maximum when the block has no kinetic energy, just before releasing it.
Then:
EPE = 1/2 · 40 N/m · (0.1 m)²
EPE = 0.2 J
The maximum potential energy of the system is 0.2 J