1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
harina [27]
3 years ago
12

What are the body parts to this figure? Any of the body parts. (Please)

Physics
1 answer:
vlabodo [156]3 years ago
3 0
1 - Skull
2 - Mandible
3 - Scapula
4 - Sternum
5 - Ulna
6 - Radius
7 - Pelvis
8 - Femur
9 - Patella
10 - Tibia
11 - Fibula
12 - Metatarsals
13 - Clavicle
14 - Ribs (rib cage)
15 - Humerus
16 - Spinal column
17 - Carpals
18 - Metacarpals
19 - Phalanges
20 - Tarsals
21 - Phalanges
You might be interested in
Which of the following best describes a plane?
katrin [286]
B, the surface of a flat table.
4 0
3 years ago
Read 2 more answers
A device for measuring atmospheric pressure is a _____. thermometer manometer barometer seismometer
vodomira [7]

A device used to measure atmospheric pressure is a barometer.

8 0
4 years ago
Read 2 more answers
Consider three identical metal spheres, A, B, and C. Sphere A carries a charge of +6q. Sphere B caries a charge of-2q. Sphere C
miskamm [114]
<h2>20. How much charge is on sphere B after A and B touch and are separated?</h2><h3>Answer:</h3>

\boxed{q_{B}=+2q}

<h3>Explanation:</h3>

We'll solve this problem by using the concept of electric potential or simply called potential V, which is <em>the energy per unit charge, </em>so the potential V at any point in an electric field with a test charge q_{0} at that point is:

V=\frac{U}{q_{0}}

The potential V due to a single point charge q is:

V=k\frac{q}{r}

Where k is an electric constant, q is value of point charge and r is  the distance from point charge to  where potential is measured. Since, the three spheres A, B and C are identical, they have the same radius r. Before the sphere A and B touches we have:

V_{A}=k\frac{q_{A}}{r_{A}} \\ \\ V_{B}=k\frac{q_{B}}{r_{A}} \\ \\ But: \\ \\ \ r_{A}=r_{B}=r

When they touches each other the potential is the same, so:

V_{A}= V_{B} \\ \\ k\frac{q_{A}}{r}=k\frac{q_{B}}{r} \\ \\ \boxed{q_{A}=q_{B}}

From the principle of conservation of charge <em>the algebraic sum of all the electric charges in any closed system is constant. </em>So:

q_{A}+q_{B}=q \\ \\ q_{A}=+6q \ and \ q_{B}=-2q \\ \\ So: \\ \\ \boxed{q_{A}+q_{B}=+4q}

Therefore:

(1) \ q_{A}=q_{B} \\ \\ (2) \ q_{A}+q_{B}=+4q \\ \\ (1) \ into \ (2): \\ \\ q_{A}+q_{A}=+4q \therefore 2q_{A}=+4q \therefore \boxed{q_{A}=q_{B}=+2q}

So after A and B touch and are separated the charge on sphere B is:

\boxed{q_{B}=+2q}

<h2>21. How much charge ends up on sphere C?</h2><h3>Answer:</h3>

\boxed{q_{C}=+1.5q}

<h3>Explanation:</h3>

First: A and B touches and are separated, so the charges are:

q_{A}=q_{B}=+2q

Second:  C is then touched to sphere A and separated from it.

Third: C is to sphere B and separated from it

So we need to calculate the charge that ends up on sphere C at the third step, so we also need to calculate step second. Therefore, from the second step:

Here q_{A}=+2q and C carries no net charge or q_{C}=0. Also, r_{A}=r_{C}=r

V_{A}=k\frac{q_{A}}{r} \\ \\ V_{C}=k\frac{q_{C}}{r}

Applying the same concept as the previous problem when sphere touches we have:

k\frac{q_{A}}{r} =k\frac{q_{C}}{r} \\ \\ q_{A}=q_{C}

For the principle of conservation of charge:

q_{A}+q_{C}=+2q \\ \\ q_{A}=q_{C}=+q

Finally, from the third step:

Here q_{B}=+2q \ and \ q_{C}=+q. Also, r_{B}=r_{C}=r

V_{B}=k\frac{q_{B}}{r} \\ \\ V_{C}=k\frac{q_{C}}{r}

When sphere touches we have:

k\frac{q_{B}}{r} =k\frac{q_{C}}{r} \\ \\ q_{B}=q_{C}

For the principle of conservation of charge:

q_{B}+q_{C}=+3q \\ \\ q_{A}=q_{C}=+1.5q

So the charge that ends up on sphere C is:

q_{C}=+1.5q

<h2>22. What is the total charge on the three spheres before they are allowed to touch each other.</h2><h3>Answer:</h3>

+4q

<h3>Explanation:</h3>

Before they are allowed to touch each other we have that:

q_{A}=+6q \\ \\ q_{B}=-2q \\ \\ q_{C}=0

Therefore, for the principle of conservation of charge <em>the algebraic sum of all the electric charges in any closed system is constant, </em>then this can be expressed as:

q_{A}+q_{B}+q_{C}=+6q -2q +0 \\ \\ \therefore q_{A}+q_{B}+q_{C}=+4q

Lastly, the total charge on the three spheres before they are allowed to touch each other is:

+4q

8 0
3 years ago
Which of the following are found within the electromagnetic spectrum? Check all that apply. sound waves visible light X rays ult
sattari [20]

Answer:

Visible light

X rays

ultraviolet radiation

gamma rays

microwave radiation

Explanation:

Electromagnetic waves consist of oscillating electric and magnetic fields which vibrate in a direction perpendicular to the direction of motion of the wave (transverse wave). Electromagnetic waves have all same speed in a vacuum (c=3.0\cdot 10^8 m/s, known as speed of light) and are classified into 7 different types according to their frequency and wavelength. This classification is called electromagnetic spectrum.

From lowest to highest wavelength, the 7 types are:

Gamma rays

X-rays

Ultraviolet radiation

Visible light

Infrared radiation

Microwaves

Radio waves

Sound waves, on the contrary, do not belong to the electromagnetic spectrum, since they are another type of wave called mechanical waves (which consist of vibrations of the particles in a medium).

8 0
3 years ago
An object at rest on a flat, horizontal surface explodes into two fragments, one seven times as massive as the other. The heavie
Veronika [31]

Answer:

Explanation:

Given that,

One fragment is 7 times heavier than the other

Let one fragment mass be M

Let this has a velocity v

And the other 7M

And this a velocity V

Initially the fragment is at rest u = 0

Applying conservation of momentum

Momentum is given as p=mv

Initial momentum = final momentum

Po = Pf

(M+7M) × 0 = 7M •V − Mv

0 = 7M•V - Mv

Divide both sides by M

0 = 7V -v

v = 7V

Since friction decelerates the masses to zero speed, we can calculate the NET work on the individual blocks and relate this quantity to the change in kinetic energy of each block

The workdone by the 7M mass is

Distance moved by 7M mass is 6.8m, Then, d =6.8m

W = fr × d

Where fr = µkN

When N=W =mg, where m=7M

N= 7Mg

fr = −µk × 7mg

Then, W(7m) = −7µk•Mg×d

W(7m) = −7µk•Mg×6.8

W(7m) = −47.6 µk•Mg

Then, same procedure,

Let distance move by the small mass be m

Work done by M mass

W(m) = −µk•Mg×d'

Since it is a wordone by friction, that is why we have a negative sign.

Using conservation of energy

Work done by 7M mass is equal to work done by M mass

W(7m) = W(m)

−47.6 µk•Mg = −µk•Mg×d

Then, M, g and µk cancels out

We are left with

-46.7 = -d

Then, d = 46.7m

7 0
3 years ago
Read 2 more answers
Other questions:
  • A person standing in the moon's "blank" would see a total solar eclipse ​
    12·2 answers
  • Choose all the answers that apply. Which of the following forces require physical contact? tension, air resistance, friction, ma
    15·1 answer
  • An asteroid orbits the Sun at an average distance of a= 4 AU. How long does it take to orbit the Sun?Use Kepler’s Third Law(p2=
    5·1 answer
  • a force of 250N is applied to an object that accelerates at a rate of 5 m/s^2. what is the mass of the object.
    10·1 answer
  • How does weight change as the gravitational acceleration changes and why?
    5·1 answer
  • Compute the kinetic energy of a proton (mass 1.67×10−27kg ) using both the nonrelativistic and relativistic expressions for spee
    14·1 answer
  • A 1kg object loses 20 j of gpe as it falls how far does it fall
    12·1 answer
  • A small hole is made at the bottom of a plastic cup. If it is filled with water and allowed to fall freely, will waterfall down
    14·2 answers
  • Q5:
    6·1 answer
  • Verify the following equations:3² ×3³=243
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!