1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
morpeh [17]
3 years ago
13

The potential difference between the plates of a capacitor is 145 V. Midway between the plates, a proton and an electron are rel

eased. The electron is released from rest. The proton is projected perpendicularly toward the negative plate with an initial speed. The proton strikes the negative plate at the same instant the electron strikes the positive plate. Ignore the attraction between the two particles, and find the initial speed of the proton.
Physics
1 answer:
aniked [119]3 years ago
7 0

Answer:

= 2.52 x 10^ 6 m/s        

Explanation:

The force that acts on charged particles between capacitor plates =

F = (q) (Δv)  ÷ d

Here,  d = distance between the two plates

          q = charge of the charged particle

         Δv = voltage

Normally, the force that makes both proton and electron released from rest, giving the charge acceleration is F=m X a. where m= mass and a = acceleration

Poting this equation with the first one, we have:

m X a =  (q) (Δv)  ÷ d

So, the acceleration of a proton when moving towards a negatively charged plate is

a = (q) (Δv)  ÷ (d) (m) {proton}

Likewise, the acceleration of an electron when moving towards a positively charged plate is

a = (q) (Δv)  ÷ (d) (m) {electron}

Dividing the proton acceleration formula by the electron acceleration formula we have:

a (proton) / a (electron) = m (proton) / m(electron)

inserting equation of motion to get distance, s

s = ut + 1/2 at^2

recall that electron travel distance, d/2

d/2 = 1/2 at^2

making t the subject of the formula

we have, t =√(d ÷ a(electron))

The distance of proton:

d/2 =  ut + 1/2 at^2 [proton}

put d/2 =  ut + 1/2 at^2 [proton} into t =√(d ÷ a(electron))

Initial speed, ui = √(d ÷ a(electron)) = (d/2) - (1/2) x (d) (a(proton) + a(electron))

since acceleration wasn't given in the question, lets use mass(elect

ron)  ÷ mass(proton) rather than use (a(proton) + a(electron))

Therefore, intial speed= 1/2√((e X Δv) ÷ m(electron)) (1- m(electron)/ m(proton))

   Note, e = 1.60 x 10^-19

           m(electron) = 9.11 X 10^-31

            m(proton) = 1.67  X 10^-27

Input these values into the formula above, initial speed, UI =  

           = 2.52 x 10^ 6 m/s          

You might be interested in
PLEASE HELPP MEEE!!!!!!!!!The goal is to increase the power; therefore, it is necessary to
Brrunno [24]

As we know that power is defined as rate of work done

so we will have

P = \frac{Work}{time}

so in order to increase the power as per above formula we know that either we need to increase the work or we need to decrease the time to complete that work

So here the correct answer will be

increase the work being done or decrease the time in which the work is completed.

3 0
3 years ago
Read 2 more answers
Nuclear fusion is when two atoms of __________________ join together to form _____________.
solong [7]

Answer:

1. Hydrogen
2. Helium

Explanation:

Nuclear fusion is when two atoms of Hydrogen join together to form one Helium atom.

3 0
2 years ago
I NEED HELP WITH NUMBER 7 I WILL GIVE U BRAINLIEST
grigory [225]

Answer:

the blue one

Explanation:

3 0
3 years ago
What do u mean by free fall?​
Degger [83]

Answer:

Any motion of a body in which gravity is the sole force acting on it is known as free fall. A body in free fall has no force acting on it under general relativity, where gravity is reduced to space-time curvature.

<u></u>

<u>OAmalOHpeO</u>

7 0
2 years ago
Which statements describe the Mercalli scale? Check all that apply.
konstantin123 [22]
<h3><u>Full question:</u></h3>

Which statements describe the Mercalli scale? Check all that apply.

A. This scale measures seismic waves based on their size.

B. This scale rates an earthquake according to how much damage it causes.

C.This scale produces a single rating for earthquakes that reach the surface.

D. This scale uses Roman numerals to rank the damage caused by an earthquake.

E.This scale measures the magnitude of an earthquake based on the size of seismic waves.

<h3><u>Answer:</u></h3>

The Mercalli scale : This scale rates an earthquake according to how much damage it causes and This scale uses Roman numerals to rank the damage caused by an earthquake.

<h3><u>Explanation:</u></h3>

The Modified Mercalli scale is intended to illustrate the consequences of an earthquake, at a contracted station, on tangible characteristics, on modern fittings and human beings.

The Modified Mercalli Intensity value ascribed to a particular site subsequent an earthquake has an extra significant means of severity to the nonscientist than the magnitude because intensity assigns to the outcomes really encountered at that position. This scale is comprised of 12 growing levels of intensity, denoted by Roman numerals, arranging from gradual shaking to catastrophic impairment.

3 0
3 years ago
Other questions:
  • If temp. gets cold resistance in thermostat increases so voltage across it increases AND LED lights brighter. I understand every
    12·1 answer
  • _____ prescribed atoms as having a positive nucleus with electrons that have different energies at different distances from the
    5·1 answer
  • The process of how rocks can tell us how old the earth is
    9·1 answer
  • The measure of the energy of motion of particles of matter?
    13·1 answer
  • The net force on the propeller of a 3.2 kg model airplane is 7.0N forward. What is the acceleration of the airplane? If it start
    9·1 answer
  • A parallel-plate capacitor is made from two aluminum-foil sheets, each 3.0 cm wide and 5.00 m long. Between the sheets is a mica
    12·1 answer
  • A chain has a mass of 10.0 kg. It is hanging freely, at rest, with one end connected to a ceiling hook.
    9·1 answer
  • The main reason that rods are more sensitive to light than cones is that
    14·1 answer
  • The fundamental of a closed organ pipe is 259.6 Hz. The second harmonic of an open organ pipe has the same frequency. What is th
    13·1 answer
  • The force required to maintain an object at a constant velocity in free space is equal to what ?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!