Answer:
Concave Lens Uses. Telescope and Binoculars Spectacles Lasers Cameras FlashlightsPeepholes. ...
Used in telescope and binoculars. ...
Concave lens used in glasses. ...
Uses of concave lens in lasers. ...
Use of concave lens in cameras. ...
Used in flashlights. ...
Concave lens used in peepholes.
Answer:
a = v^2/r centripetal acceleration
v = (a * r)^1/2 = (42 * .23)^1/2 = 3.1 m/s
Answer:
a) 17.8 m/s
b) 28.3 m
Explanation:
Given:
angle A = 53.0°
sinA = 0.8
cosA = 0.6
width of the river,d = 40.0 m,
the far bank was 15.0 m lower than the top of the ramp h = 15.0 m,
The river itself was 100 m below the ramp H = 100 m,
(a) find speed v
vertical displacement

putting values h=15 m, v=0.8
............. (1)
horizontal displacement d = vcosA×t = 0.6×v ×t
so v×t = d/0.6 = 40/0.6
plug it into (1) and get

solving for t we get
t = 3.734 s
also, v = (40/0.6)/t = 40/(0.6×3.734) = 17.8 m/s
(b) If his speed was only half the value found in (a), where did he land?
v = 17.8/2 = 8.9 m/s
vertical displacement = 
⇒ 
t = 5.30 s
then
d =v×cosA×t = 8.9×0.6×5.30= 28.3 m
Answer:
Maximum altitude to see(L) = 1.47 × 10⁶ m (Approx)
Explanation:
Given:
wavelength (λ) = 0.12 nm = 0.12 × 10⁻⁹ m
Pupil Diameter (d) = 4.1 mm = 4 × 10⁻³ m
Separation distance (D) = 5.4 cm = 0.054 m
Find:
Maximum altitude to see(L)
Computation:
Resolving power = 1.22(λ / d)
D / L = 1.22(λ / d)
0.054 / L = 1.22 [(0.12 × 10⁻⁹) / (4 × 10⁻³ m)]
0.054 / L = 1.22 [0.03 × 10⁻⁶]
L = 0.054 / 1.22 [0.03 × 10⁻⁶]
L = 0.054 / [0.0366 × 10⁻⁶]
L = 1.47 × 10⁶
Maximum altitude to see(L) = 1.47 × 10⁶ m (Approx)
1) find speed (8.8 m/s)
2) find acceleration (38.7 m/s^2)
answer is about 38.7 m/s^2