Answer:
b) 7
Explanation:
The pH of a solution produced by the neutralization reaction between 1M of H₂SO₄ and KOH with 1M is closest to 7.
pH is a standard for measuring the acidity and alkalinity of a solution. A solution that is acidic will have a pH less than 7, a neutral solution will have pH of 7 and a basic solution will have pH greater than 7.
What is a neutralization reaction?
- It is an acid-base reaction in which hydrogen and hydroxide ions combines to form water.
- Also a salt results from the combination of the other ions.
In this reaction a base simply neutralizes an acid and the solution becomes neutral before it goes into completion.
Therefore, a neutral solution will have pH of 7 or close to it.
Answer:
<h2>Hope my answer helps</h2>
Explanation:
<h2>Moist to wet snow is the ideal moisture content needed to build the best snowman. If the snow is too dry, it is comparable to loose powder and in turn, the snow won't stick together. On the other hand, if the snow has too much moisture and is slushy, it can't form into a solid.</h2>
Your answer would be c
hope this helps
The electron dot diagram for the oxygen atom shows six electrons around the symbol of the atom.
<h3>What is the electron dot diagram?</h3>
The electron dot diagram is the diagram of atoms of elements showing only the valence electrons present in the atom represented with dots.
The electron dot diagram for the oxygen atom is drawn as follows:
- The number of valence electrons in oxygen atom is determined; valence electrons = 6
- The symbol for the oxygen atom is written
- The valence electrons are shown as dots around the symbol of the element.
In conclusion, the electron dot diagram uses dots around the symbol of an atom to show the valence electrons in the atom.
Learn more about electron dot diagram at: brainly.com/question/5835591
#SPJ1
Answer:
the mole fraction of Gas B is xB= 0.612 (61.2%)
Explanation:
Assuming ideal gas behaviour of A and B, then
pA*V=nA*R*T
pB*V=nB*R*T
where
V= volume = 10 L
T= temperature= 25°C= 298 K
pA and pB= partial pressures of A and B respectively = 5 atm and 7.89 atm
R= ideal gas constant = 0.082 atm*L/(mol*K)
therefore
nA= (pA*V)/(R*T) = 5 atm* 10 L /(0.082 atm*L/(mol*K) * 298 K) = 2.04 mole
nB= (pB*V)/(R*T) = 7.89 atm* 10 L /(0.082 atm*L/(mol*K) * 298 K) = 3.22 mole
therefore the total number of moles is
n = nA +nB= 2.04 mole + 3.22 mole = 5.26 mole
the mole fraction of Gas B is then
xB= nB/n= 3.22 mole/5.26 mole = 0.612
xB= 0.612
Note
another way to obtain it is through Dalton's law
P=pB*xB , P = pA+pB → xB = pB/(pA+pB) = 7.69 atm/( 5 atm + 7.89 atm) = 0.612