Answer:
Mass and thus force depends on the reference frame chosen
Explanation:
This can be explained as Newton's law of gravity provides action which are instantaneous at a distance and involves the evaluation of all the quantities at present time or at the instant they occur.
If the body undergoes a change in its mass distribution there will be an immediate change in its gravitational force without any lag.
Now, if we talk about special relativity, it would be absurd to say that an information can travel faster than light. The effect is in synchronization with the cause in one reference frame where the effect occurs after the cause for some observer in some other reference frame.
In order to observe Newton's law of gravity all the observer's in different reference frames must observe the same phenomena which could only be possible if time were absolute and in special relativity, time is not absolute.
Therefore, Newton's law of gravity was inconsistent with the Einstein's Special Relativity.
Ocean bulges on Earth would be bigger if the Moon had twice as much mass and yet orbited the planet at the same distance. Option B is correct.
<h3>What is ocean bludge?</h3>
The fluid and moveable ocean water are drawn towards the moon by the gravitational attraction between the moon and the Earth.
The ocean nearest to the moon experiences a bulge as a result, and as the Earth rotates, the affected seas' locations shift.
The Moon's bulges in the oceans would be larger if it had twice the mass and orbited Earth at the same distance.
Hence option B is corect.
To learn more about the ocean bulge refer;
brainly.com/question/14373016
#SPJ1
Answer:
A hypothesis is a basically a theory proposed to a subject or refrence to an act with limited evidences.
<h2>MARK BRAINLIEST</h2>
For this assignment, you will develop several models that show how light waves and mechanical waves are reflected, absorbed, or transmitted through various materials. For each model, you will write a brief description of the interaction between the wave and the material. You will also compose two <u><em>typewritten</em></u> paragraphs. The first will compare and contrast light waves interacting with different materials. The second will explain why materials with certain properties are well suited for particular functions.
<h2><u>Background Information</u></h2>
A wave is any disturbance that carries energy from one place to another. There are two different types of waves: mechanical and electromagnetic. A mechanical wave carries energy through matter. Energy is transferred through vibrating particles of matter. Examples of mechanical waves include ocean waves, sound waves, and seismic waves. Like a mechanical wave, an electromagnetic wave can also carry energy through matter. However, unlike a mechanical wave, an electromagnetic wave does not need particles of matter to carry energy. Examples of electromagnetic waves include microwaves, visible light, X-rays, and radiation from the Sun.
Answer:
30 metres.
Explanation:
Given that a red ball moves horizontally in a 30 m long tube.
Displacement is the distance travelled in a specific direction. It has both magnitude and direction.
Since the motion is horizontal, it moves is a certain direction.
Within the stipulation of time, the displacement will be the distance covered in the horizontal direction which is 30 metres.
Therefore, the displacement of the motion of the red ball is 30 metres.