<span>5.3 cm/s
This is a matter of conservation of momentum. Since there's no mention of the puck rebounding, I will consider this to be a totally non-elastic collision. So, let's determine the starting momentum of the system.
Goalie is at rest, so his momentum is 0.
Puck is moving at 30.00 m/s with a mass of 0.16 kg, so:
30.00 m/s * 0.16 kg = 4.8 kg*m/s
So the starting momentum is 4.8 kg*m/s moving towards the goal. After the collision, the puck and goalie will have the same momentum. So figure out the mass of the new system:
90.00 kg + 0.16 kg = 90.16 kg
And divide the system momentum by the system mass:
4.8 kg*m/s / 90.16 kg = 0.053238687 m/s
Finally, round to the least precise datum, so the result to 2 significant figures is 0.053 m/s, or 5.3 cm/s.</span>
By putting an apple up on high ground. (That is 1 example)
This creates a higher gravitational force, and when it falls down it would have a lot of kinetic energy. But, if put on low ground, it wouldn't have enough potential energy to increase the kinetic energy.
Explanation:
I don't think the coat will make any difference
Ha! Lot of words but the question itself is easy.
The answer is 2.5 times 10 to the 5th power.
The main part of the numbers has the decimal point placed after the first digit.
Then for what number of power, you just count the number of decimal places moved.
I hope this helps you.
The answer is -17x-1. You have to combine like terms.