Do you not understand how to solve for the answer?
Incomplete Question.The Complete question is
The Earth spins on its axis and also orbits around the Sun. For this problem use the following constants. Mass of the Earth: 5.97 × 10^24 kg (assume a uniform mass distribution) Radius of the Earth: 6371 km Distance of Earth from Sun: 149,600,000 km
(i)Calculate the rotational kinetic energy of the Earth due to rotation about its axis, in joules.
(ii)What is the rotational kinetic energy of the Earth due to its orbit around the Sun, in joules?
Answer:
(i) KE= 2.56e29 J
(ii) KE= 2.65e33 J
Explanation:
i) Treating the Earth as a solid sphere, its moment of inertia about its axis is
I = (2/5)mr² = (2/5) * 5.97e24kg * (6.371e6m)²
I = 9.69e37 kg·m²
About its axis,
ω = 2π rads/day * 1day/24h * 1h/3600s
ω= 7.27e-5 rad/s,
so its rotational kinetic energy
KE = ½Iω² = ½ * 9.69e37kg·m² * (7.27e-5rad/s)²
KE= 2.56e29 J
(ii) About the sun,
I = mR²
I= 5.97e24kg * (1.496e11m)²
I= 1.336e47 kg·m²
and the angular velocity
ω = 2π rad/yr * 1yr/365.25day * 1day/24h * 1h/3600s
ω= 1.99e-7 rad/s
so
KE = ½ * 1.336e47kg·m² * (1.99e-7rad/s)²
KE= 2.65e33 J
Answer:
The number of turns in the solenoid is 230.
Explanation:
Given that,
Rate of change of current, 
Induced emf, 
Current, I = 1.5 A
Magnetic flux, 
The induced emf through the solenoid is given by :

or
........(1)
The self inductance of the solenoid is given by :
.........(2)
From equation (1) and (2) we get :

N is the number of turns in the solenoid


N = 229.28 turns
or
N = 230 turns
So, the number of turns in the solenoid is 230. Hence, this is the required solution.
<span>So we want to know why is there a difference between the force of gravity on the Moon and the force of gravity of the Earth. So the gravitational force between two objects depends on the masses of both objects. That can be seen from Newtons universal law of gravity. F=G*m1*m2*(1/r^2). So lets say we are holding an object of mass m=1kg on a height r=1m on the Moon and we are holding the same object on the Earth also on the same height of r=1m. The Gravitational force on the Earth will be Fg=G*M*m*(r^2) where M is the mass of the Earth. The force between the moon and that object will be Fg=G*n*m*(r^2), where n is the mass of the moon. Since mass of the Moon is much smaller than mass of the Earth, The gravitational force between the Moon and that body will be almost 6 times smaller than the gravitational force between the Earth and that body. So the correct answer is B. </span>