Answer:
The SI units of A, B and C are :
Explanation:
The position x, in meters, of an object is given by the equation:

Where
t is time in seconds
We know that the unit of x is meters, such that the units of A, Bt and
must be meters. So,


So, the SI units of A, B and C are :

So, the correct option is (B).
Answer:
3099 J
Explanation:
The increase in thermal energy corresponds to the mechanical energy lost in the process.
The mechanical energy is given by the sum of gravitational potential energy and kinetic energy of the fireman:

At the top of the pole, the fireman has no kinetic energy, so all his mechanical energy is just potential energy:

When the fireman reaches the bottom, he has no gravitational potential energy, so his mechanical energy is just given by his kinetic energy:

So, the loss in mechanical energy was

and this corresponds to the increase in thermal energy.
<u>Answer
</u>
He should make the arrow for “Path” curve downward.
<u>Explanation
</u>
The force of gravity is usually directly downward. So from the diagram, it is correctly labelled.
If the object was given a horizontal force, the direction of the inertial is also correct. Inertial is the force the resist the change of state of motion.
What Hector should change is the path followed by the object. It will be a curve not a straight line as it is drawn.
The correct answer is He should make the arrow for “Path” curve downward.