1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Svetach [21]
3 years ago
13

Calculate the east component of a resultant 32.5 m/s, 35.0° east of north.

Physics
1 answer:
ValentinkaMS [17]3 years ago
4 0

Answer:

East component is: 18.64 m/s

Explanation:

If the resultant is 32.5 m/s directed 35 degrees east of north, then we use the sin(35) projection to find the east component of the velocity:

East component = 32.5 m/s * sin(35) = 18.64 m/s

You might be interested in
1. A listener stands 20.0 m from a speaker that pumps out music with a power output of 100.0 W.
marta [7]

(1.a) The surface area being vibrated by the time the sound reaches the listener is 5,026.55 m².

(1.b) The intensity of the sound wave as it reaches the person listening is 0.02 W/m².

(1.c) The relative intensity of the sound as heard by the listener is 103 dB.

(2.a) The speed of sound if the air temperature is 15⁰C is 340.3 m/s.

(2.b) The frequency of the sound heard by the suspect is 614.3 Hz.

<h3>Surface area being vibrated</h3>

The surface area being vibrated by the time the sound reaches the listener is calculated as follows;

A = 4πr²

A = 4π x (20)²

A = 5,026.55 m²

<h3>Intensity of the sound</h3>

The intensity of the sound is calculated as follows;

I = P/A

I = (100) / (5,026.55)

I = 0.02 W/m²

<h3>Relative intensity of the sound</h3>

B = 10log(\frac{I}{I_0} )\\\\B = 10 \times log(\frac{0.02}{10^{-12}} )\\\\B = 103 \ dB

<h3>Speed of sound at the given temperature</h3>

v= 331.3\sqrt{1 + \frac{T}{273} } \\\\v = 331.3\sqrt{1 + \frac{15}{273} } \\\\v = 340.3 \ m/s

<h3>Frequency of the sound</h3>

The frequency of the sound heard is determined by applying Doppler effect.

f_o = f_s(\frac{v \pm v_0}{v \pm v_s} )

where;

  • -v₀ is velocity of the observer moving away from the source
  • -vs is the velocity of the source moving towards the observer
  • fs is the source frequency
  • fo is the observed frequency
  • v is speed of sound

f_0 = f_s(\frac{v-v_0}{v- v_s} )

f_0 = 512(\frac{340.3 - 10}{340.3 - 65} )\\\\f_0 = 614.3 \ Hz

Learn more about intensity of sound here: brainly.com/question/17062836

3 0
1 year ago
A wave emitted from a source has a frequency of 10 Hz and wavelength 2.5 m. How much time will it take to reach a person located
const2013 [10]

Answer:

time taken by the wave to reach the person is 0.2 s

Explanation:

As we know that the speed of the wave is given as

v = \lambda f

here we know that the wavelength of the wave is

\lambda = 2.5 m

f = 10 Hz

now speed of the wave is given as

v = 10(2.5)

v = 25 m/s

Now time taken by the wave to reach 5 m distance is

t = \frac{L}{v}

t = \frac{5}{25}

t = 0.2 s

4 0
3 years ago
Transcranial magnetic stimulation (TMS) is a noninvasive technique used to stimulate regions of the human brain. A small coil is
attashe74 [19]

Answer:

0.125 volts

Explanation:

The induced emf can be sufficient to stimulate neuronal activity.

One such device generates a magnetic field within the brain that rises from zero to 1.5 T in 120 ms.

We need to find the induced emf within a circle of tissue of radius 1.6 mm and that is perpendicular to the direction of the field. The formula for the induced emf is given by :

\epsilon=-\dfrac{d\phi}{dt}

Where

\phi is magnetic flux

So,

\epsilon=-\dfrac{d(BA)}{dt}\\\\=2\pi r\times \dfrac{dB}{dt}\\\\=2\pi \times 1.6\times 10^{-3}\times \dfrac{1.5-0}{120\times 10^{-3}}\\\\=0.125\ V

So, the induced emf is equal to 0.125 volts.

7 0
3 years ago
What types of cells are likely to have lots of smooth ER?
Andrei [34K]

Answer:

eukaryotic cells

Explanation:

"Smooth endoplasmic reticulum (sER) is (a part of) endoplasmic reticulum that is tubular in form and lacks ribosomes. It is present in eukaryotic cells and is associated with lipid synthesis, carbohydrate metabolism, regulation of calcium concentration, and drug detoxification"

source: biologyonline

8 0
3 years ago
A block of mass m is attached to a rope wound around the outer rim of a disk of radius R and moment of inertia I, which is free
Hoochie [10]

Answer:

Explanation:

I is the moment of inertia of the pulley, α is the angular acceleration of the pulley and T is the tension in the rope. Let a is the linear acceleration.

The relation between the linear acceleration and the angular acceleration is

a = R α   .... (1)

According to the diagram,

T x R = I x α

T x R = I x a / R      from equation (1)

T = I x a / R²      .... (2)

mg - T = ma    .... (3)

Substitute the value of T from equation (2) in equation (3)

mg - \frac{Ia}{R^{2}}=ma

a=\frac{mg}{m+\frac{I}{R^{2}}}

T is the acceleration in the system

Substitute the value of a in equation (2)

T = \frac{I}{R^{2}}\times \frac{mg}{m+\frac{I}{R^{2}}}

T=\frac{I\times mg}{I+mR^{2}}

This is the tension in the string.

4 0
3 years ago
Other questions:
  • A 20 kg object is dropped from a very tall building. What is the weight of this objects? After 5 seconds, how has the object fal
    10·1 answer
  • Are soaps salts true or false
    7·1 answer
  • A horizontal spring with spring constant 750 N/m is attached to a wall. An athlete presses against the free end of the spring, c
    6·2 answers
  • A top of rotational inertia 4.0 kg m2 receives a torque of 2.4 nm from a physics professor. the angular acceleration of the body
    12·1 answer
  • Describe how cell membranes are selectively permeable
    12·1 answer
  • The human circulation system has approximately 1×109 capillary vessels. Each vessel has a diameter of about 8 µm. Assuming cardi
    15·1 answer
  • Boojho made light from a laser torch to fall on a prism. Will he be able to observe a band
    12·1 answer
  • Is It possible for two dominant parents to have a recessive baby ?
    13·1 answer
  • What is the refractive index of a medium?
    14·2 answers
  • In a house, 3 bulbs of 60 watt each are lighted for 3 hours daily, 4 fans of 100 watt each are used for 8 hours daily and an ele
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!