A high quality insecticide applied all along the axis and the surrounding area can protect against a recurrence for a substantial period of time.
Answer:
0.167m/s
Explanation:
According to law of conservation of momentum which States that the sum of momentum of bodies before collision is equal to the sum of the bodies after collision. The bodies move with a common velocity after collision.
Given momentum = Maas × velocity.
Momentum of glider A = 1kg×1m/s
Momentum of glider = 1kgm/s
Momentum of glider B = 5kg × 0m/s
The initial velocity of glider B is zero since it is at rest.
Momentum of glider B = 0kgm/s
Momentum of the bodies after collision = (mA+mB)v where;
mA and mB are the masses of the gliders
v is their common velocity after collision.
Momentum = (1+5)v
Momentum after collision = 6v
According to the law of conservation of momentum;
1kgm/s + 0kgm/s = 6v
1 =6v
V =1/6m/s
Their speed after collision will be 0.167m/s
Answer:
Explanation:
mass of refrigerator, m = 110 kg
coefficient of static friction, μs = 0.85
coefficient of kinetic friction, μk = 0.59
(a) the minimum force required to just start the motion in refrigerator
F = μs x mg
F = 0.85 x 110 x 9.8
F = 916.3 N
(b) The force required to move the refrigerator with constant speed
F' = μk x mg
F' = 0.59 x 110 x 9.8
F' = 636.02 N
(c) Let a be the acceleration.
Net force = Applied force - friction force
F net = 950 - 636.02
F net = 313.98 N
a = F net / mass
a = 313.98 / 110
a = 2.85 m/s²
Answer:
0.146 m/s
Explanation:
We can see it in the pic.
A star is located 5.9 light years from Earth.
We know that : 1 light year = 9.46 trillion kilometers.
We will calculate the distance in trillion kilometers multiplying the number of light years by 9.46:
5.9 * 9.46 = 55.814
Answer: The distance is 55.814 trillion km.