The table shows the results of (p ^ q) and results of (p ^ r) for all possible outcomes. We have to tell which of the outcomes of union of both these events will always be true.
(p ^ q) V (p ^ r) means Union of (p ^ q) and (p ^ r). The property of Union of two sets/events is that it will be true if either one of the event or both the events are true i.e. there must be atleast one True(T) to make the Union of two sets to be True.
So, (p ^ q) V (p ^ r) will be TRUE, if either one of (p ^ q) and (p ^ r) or both are true. From the given table we can see that only the outcomes A, B and C will result is TRUE. The rest of the outcomes will all result in FALSE.
Therefore, the answer to this question is option 2nd
Answer:
0.36
Step-by-step explanation:
0.6*3/5= 0.36
Answer:
Difference= $3,090.15 in favor of compounded interest
Step-by-step explanation:
Giving the following information:
Present value (PV)= $8,500
Ineterest (i)= 0.025/12= 0.00208
Number of periods (n)= 360 months
<u>We will calculate the future value of each option and determine the difference:</u>
<u>Simple interest:</u>
FV= (PV*i*n) + PV
FV= (8,500*0.00208*360) + 8,500
FV= $14,864.8
<u>Compounded interest:</u>
FV= PV*(1+i)^n
FV= 8,500*(1.00208^360)
FV= $17,958.95
Difference= $3,090.15
The answer relies on whether the balls are different or not.
If they are not, which is almost certainly what is intended.
If they are, the perceptive is a bit different. Your
expression gives the likelihood that a particular set of j balls
goes into the last urn and the other n−j balls into the other urns.
But there are (nj) different possible sets of j balls, and each of
them the same probability of being the last insides of the last urn, so the
total probability of completing up with exactly j balls in the last
urn is if the balls are different.
See attached file for the answer.
Answer:
A = 1/625 or 0.0016
Step-by-step explanation: