The reaction between the reactants would be:
CH₃NH₂ + HCl ↔ CH₃NH₃⁺ + Cl⁻
Let the conjugate acid undergo hydrolysis. Then, apply the ICE approach.
CH₃NH₃⁺ + H₂O → H₃O⁺ + CH₃NH₂
I 0.11 0 0
C -x +x +x
E 0.11 - x x x
Ka = [H₃O⁺][CH₃NH₂]/[CH₃NH₃⁺]
Since the given information is Kb, let's find Ka in terms of Kb.
Ka = Kw/Kb, where Kw = 10⁻¹⁴
So,
Ka = 10⁻¹⁴/5×10⁻⁴ = 2×10⁻¹¹ = [H₃O⁺][CH₃NH₂]/[CH₃NH₃⁺]
2×10⁻¹¹ = [x][x]/[0.11-x]
Solving for x,
x = 1.483×10⁻⁶ = [H₃O⁺]
Since pH = -log[H₃O⁺],
pH = -log(1.483×10⁻⁶)
<em>pH = 5.83</em>
1/8=(1/2)^3 and the half life of radon is 3.8days
Half life is the time it takes for half of any amount of a radioactive substance to decay into something else.
Therefore for a sample of radon to decay to 1/8 of its original amount, it would take 3 x 3.8days=11.4 days
<span>N2 + 3H2 → 2 </span>NH3<span> from bal. rxn., 2 moles of </span>NH3<span> are formed per 3 moles of </span>H2, 2:3 moleH2<span>: 3.64 </span>g<span>/ 2 </span>g<span>/mole </span>H2<span>= 1.82 1.82 moles </span>H2<span> x 2/3 x 17
</span>
C. A lipid with three unsaturated fatty acids.
(got the question correct on a test)
7 would be correct because I divide it