Answer:
Yes, if the two carts are moving into opposite directions
Explanation:
The total momentum of the system of two carts is given by:

where
m1, m2 are the masses of the two carts
v1, v2 are the velocities of the two carts
Let's remind that v (the velocity) is a vector, so its sign depends on the direction in which the cart is moving.
We want to know if it is possible that the total momentum of the system can be zero, so it must be:

From this equation, we see that this condition can only occur if v1 and v2 have opposite signs. Opposite signs mean opposite directions: therefore, the total momentum can be zero if the two carts are moving into opposite directions.
Organic materials continue to be the largest component of MSW. Paper and paperboard account for 27 percent and yard trimmings and food account for another 28 percent. Plastics comprise about 13 percent; metals make up 9 percent; and rubber, leather, and textiles account for 9 percent.
Answer:
i. The pressure of due to the water, <em>P</em>, is given according to the following equation;
P = ρ·g·h
Where;
ρ = The density of the water (a constant) = 997 kg/m³
g = The acceleration due to gravity = 9.81 m/s²
h = The height of the water (minimum h = h₁, maximum h = h₂)
The pressure is directly proportional to the water height, and we have;
The pressure, <em>P</em>, will be maximum when the water height, <em>h</em>, is maximum or h = h₂, which is the level DC
ii. The thrust = The force acting on the body = Pressure × Area
The maximum areas exposed to the water are on side AB and DC
However, the pressure at level DC, which is the location of the maximum pressure, is larger than the pressure at level AB, therefore, the maximum thrust will be at the level DC
Explanation:
The correct answer is A. Solid
Gas has the least density because the atoms and molecules spread to fit the container. Liquids is between solid and gas when it comes to density, while solid has the highest density due to the way the molecules are tightly and closely connected.