<span>A diagonal cross section of a sphere produces a circle.
Regardless of how the sphere is cut, it will form a circle.
</span>
<span>Thank you for posting your question. I hope you found what you were after. Please feel free to ask me more</span>
3. ΔPQR ≅ ΔSRT
3. ASA (Angle - Side - Angle) - we have two triangles where we know two angles and the included side are equal
If two sides and the included angle of one triangle are equal to the corresponding sides and angle of another triangle, the triangles are congruent.
4. PR ≅ SR
4. ΔPQR ≅ ΔSRT - the corresponding sides are congruent.
Answer:
I'm going to paint you a picture in words of what this looks like on paper. We have a train leaving from a point on your paper heading straight west. We have another train leaving from the same point on your paper heading straight east. This is the "opposite directions" that your problem gives you.
Now let's make a table:
distance = rate * time
Train 1
Train 2
We will fill in this table from the info in the problem then refer back to our drawing. It says that one train is traveling 12 mph faster than the other train. We don't know how fast "the other train" is going, so let's call that rate r. If the first train is travelin 12 mph faster, that rate is r + 12. Let's put that into the table
distance = rate * time
Train 1 r
Train 2 (r + 12)
Then it says "after 2 hours", so the time for both trains is 2 hours:
distance = rate * time
Train 1 r * 2
Train 2 (r + 12) * 2
Since distance = rate * time, the distance (or length of the arrow pointing straight west) for Train 1 is 2r. The distance (or length of the arrow pointing straight east) for Train 2 is 2(r + 12) which is 2r + 24. The distance between them (which is also the length of the whole entire arrow) is 232. Thus:
2r + 2r + 24 = 232 and
4r = 208 so
r = 52
This means that Train 1 is traveling 52 mph and Train 2 is traveling 12 miles per hour faster than that at 64 mph
Step-by-step explanation:
Answer:
Step-by-step explanation:
Answer:
Using reflexive property (for side), and the transversals of the parallel lines, we can prove the two triangles are congruent.
Step-by-step explanation:
- Since AB and DC are parallel and AC is intersecting in the middle, you can make out two pairs of alternate interior angles<em>.</em> These angle pairs are congruent because of the alternate interior angles theorem. The two pairs of congruent angles are: ∠DAC ≅ ∠BCA, and ∠BAC ≅ ∠DCA.
- With the reflexive property, we know side AC ≅ AC.
- Using Angle-Side-Angle theorem, we can prove ΔABC ≅ ΔCDA.