Answer: (a) t = 5.44 sec
(b) vf = 53.31 m/s
(c) s = 5.0m
Explanation: from the question, given data
the Height of the tower, h = 145m
from question
(a)
the initial velocity, v₁ = 0 m/s
s = v₁t + 1/2 gt²
-145 m = 0(t) + 1/2 (-9.8t²)
t² = 145/4.9
t² = 29.59
t = 5.44 sec
(b)
the speed of the sphere at the bottom of the tower is
vf² = vi² +2as
vf² = 0 + 2(-9.8 × -145)
vf² = 2842
vf = 53.31 m/s
(c)
when caught, the sphere experiences a deceleration of;
a = -29.0g
the time it would take to decelerate becomes;
vf = vi + at
0 = (53.31) + (-29 ×9.8)t
where t = 53.31 / 284.2
t = 0.1876 sec
∴ the distance travelled during the deceleration becomes;
vf² = vi² + 2as
s = (vf² - vi²) / 2a
s = (0 - 53.31²) / 2×-29×9.8
s = -2841.9561 / -568.4
s = 4.99 ≈ 5.0m
i hope this helps, cheers
Answer:
False
Explanation:
Solid water (ice) has a lesser density than liquid water. Hence, the statement is false.
By using an electric field, it is feasible to differentiate between these different forms of radiation.
<h3>What is a radioactive source?</h3>
A source that emits radiation like gamma, beta, and alpha rays is said to be radioactive. Using an electric field, we can discriminate between these different forms of radiation.
The field does not deflate the gamma rays, but it does deflate the alpha and beta rays, with the alpha being deflated to the field's negative portion and the beta to its positive part.
Hence, by using an electric field, it is feasible to differentiate between these different forms of radiation.
To learn more about the radioactive source refer;
brainly.com/question/12741761
#SPJ1
Answer:
(
)=1913.31 N/m^2
Explanation:
given:
=0.85
=90 m/s
γ∞=1.23 kg/m^3
solution:
since outside pressure is atm pressure vaccum can be defined by (
)
=√2(
)/γ∞[
-1]
(
)=1913.31 N/m^2
Answer:
This is the answer: The speed of a proton is about 5.0 × 10⁵ m/s
Explanation:
Because of the speeds of protons! :D