Answer:
Half life is the time taken by a radio active isotope to reduce by half of its original amount. Radium-226 has a half life of 1602 years meaning that it would take 1602 years for a mass of radium to reduce by half.
Number of half lives in 9612 years = 9612/1602 = 6 half lives
New mass = Original mass x (1/2)n where n is the number of half lives.
Therefore, New mass= 500 x (1/2)∧6
= 500 x 0.015625
= 7.8125 g
Hence the mass of radium after 9612 years will be 7.8125 grams.
Explanation:
Answer:
See Explanation
Explanation:
Metallic bonds involve attraction between electrons and positively charged metal ions. The metals are ionized and electrons form a sea of valence electrons. These loosely bound electrons surround the nuclei of the metals.
The presence of this sea of electrons explains the fact that metals conduct electricity and heat due to the free valence electrons.
Due to the nature of the bonding between metal atoms,metals are malleable and ductile.
Due to the strong electrostatic interaction between metal ions and electrons, the metallic bond is very strong and is very difficult to break thereby accounting for the greater strength of metals as the size of the metallic ion decreases.
Here is your answer
B. NaCl
_________________
In option A. Na isn't present.
In option C. there are two atoms of Na
So, option B is correct
HOPE IT IS USEFUL
Answer:
2.03
Explanation:
Let's <u>assume we have 1 L of the solution</u>:
- There would be 2.07 ethylene glycol moles.
- The solution would weigh (1000 mL * 1.02 g/mL) = 1020 g.
With that information we can <u>calculate the molality</u>:
- molality = moles of solute / kg of solvent
- molality = 2.07 moles / (1020 ÷ 1000) = 2.03 m
Keep in mind that this is only an estimate, as we used the kg of the solution and not of the solvent.