Answer:
(a) 1.3 x 10^6 Hz
(b) 76.73 cm
Explanation:
(a)
the formula for the frequency is given by
f = B q / 2 π m
where, B be the strength of magnetic field, q be the charge on one electron, m is the mass of one electron.
B = 46.7 micro tesla = 46.7 x 10^-6 T
q = 1.6 x 10^-19 C
m = 9.1 x 10^-31 kg
f = (46.7 x 10^-6 x 1.6 x 10^-19) / (2 x 3.14 x 9.1 x 10^-31) = 1.3 x 10^6 Hz
(b) K = 114 eV = 114 x 1.6 x 10^-19 J = 182.4 x 10^-19 J
K = 1/2 mv^2
182.4 x 10^-19 = 0.5 x 9.1 x 10^-31 x v^2
v = 6.3 x 10^6 m/s
r = m v / B q
Where, r be the radius of circular path
r = (9.1 x 10^-31 x 6.3 x 10^6) / (46.7 x 10^-6 x 1.6 x 10^-19)
r = 0.7673 m = 76.73 cm
Answer:
The entropy change of the sample of water = 6.059 x 10³ J/K.mol
Explanation:
Entropy: Entropy can be defined as the measure of the degree of disorder or randomness of a substance. The S.I unit of Entropy is J/K.mol
Mathematically, entropy is expressed as
ΔS = ΔH/T....................... Equation 1
Where ΔH = heat absorbed or evolved, T = absolute temperature.
<em>Given: If 1 mole of water = 0.0018 kg,</em>
<em>ΔH = latent heat × mass = 2.26 x 10⁶ × 1 = 2.26x 10⁶ J.</em>
<em>T = 100 °C = (100+273) K = 373 K.</em>
<em>Substituting these values into equation 1,</em>
<em>ΔS =2.26x 10⁶/373</em>
ΔS = 6.059 x 10³ J/K.mol
Therefore the entropy change of the sample of water = 6.059 x 10³ J/K.mol
Poder = (resistencia) x (corrente)²
Poder = (10 ohms) x (5 A)²
<em>Poder = 250 watts </em>(250 Joule por segundo)
2 horas = 7,200 segundos
Energia = (250 joule/seg) x (7,200 seg)
<em>Energia = 1,800,000 Joules</em>
Answer:
k = 49 N/m
Explanation:
Given that,
Mass, m = 250 g = 0.25 kg
When the mass is attached to the end of the spring, it elongates 5 cm or 0.05 m. We need to find the spring constant. Let it is k.
The force due to mass is balanced by its weight as follows :
mg=kx

So, the spring constant of the spring is 49 N/m.