To solve this problem, we know that:
1 Albert = 88 meters
1 A = 88 m
The first thing we have to do is to square both sides of
the equation:
(1 A)^2 = (88 m)^2
1 A^2 = 7,744 m^2
<span>Since it is given that 1 acre = 4,050 m^2, so to reach
that value, 1st let us divide both sides by 7,744:</span>
1 A^2 / 7,744 = 7,744 m^2 / 7,744
(1 / 7,744) A^2 = 1 m^2
Then we multiply both sides by 4,050.
(4050 / 7744) A^2 = 4050 m^2
0.523 A^2 = 4050 m^2
<span>Therefore 1 acre is equivalent to about 0.52 square
alberts.</span>
A translucent object allows light to travel through its material.
The law of conservation of energy<span>, a fundamental concept of physics, states that the total amount of </span>energy<span> remains constant in an isolated system. It implies that </span>energy<span> can neither be created nor destroyed, but can be change from one form to another.</span>
Answer: 91.4 J
Explanation:
Kinetic energy is the energy possessed by a body due to virtue of its motion.
K.E. = 0.5 m v²
Mass of the continent is given, m = 1.819 × 10²¹ kg
Side of the block of continent, s = 4150 km = 4150000 m
Depth of the block of continent, d = 38 km = 38000 m
(Mass = density × volume
m = 2780 kg/m³× (4150 × 10³ m)²× 38 × 10³ m = 1.819 × 10²¹ kg)
The continent is moving at the rate of, v = 1 cm /year = 0.01 m / 31556926 s = 3.17 × 10⁻¹⁰ m/s
⇒ K.E. = 0.5 × 1.819 × 10²¹ kg × (3.17 × 10⁻¹⁰ m/s)²= 91.4 J
Hence, mass of the continent has 91.4 J of kinetic energy.
Gene flow
I think gene flow