You would be correct.
Because you have only JUST released the arrow, and how close he is to the target, it would have the same amount of energy when it strikes the target. Yes, the kinetic energy would be destroyed when you hit the target but not right away. And yes, the potential energy would also be destroyed once you release the arrow, but it goes straight back once it stops moving, aka when it hits the target, although it has only just stopped moving.
Hope this helps!
Answer:
The kinetic energy would decrease because it has less mass
Explanation:
A battery
Answer:
857.5 m
2.8583×10⁻⁶ seconds
Explanation:
Time taken by the sound of the thunder to reach the student = 2.5 s
Speed of sound in air is 343 m/s
Speed of light is 3×10⁸ m/s
Distance travelled by the sound = Time taken by the sound × Speed of sound in air
⇒Distance travelled by the sound = 2.5×343 = 857.5 m
⇒Distance travelled by the sound = 857.5 m
Time taken by light = Distance the light travelled / Speed of light

Time taken by light = 2.8583×10⁻⁶ seconds
Answer:
Sound energy to electric energy - a person talking into a microphone
Radiant energy to electric energy - sunlight falling on solar panels
Gravitational potential energy to motion energy - a ball dropped from a height
Explanation:
A person talking is the sound energy and going into an electric phone
Sunlight or Radiant energy falls onto the solar panels creating electric energy
The ball is being pulled down by gravity from a certain height, going down to the ground, it’s motion, falling