The magnetic force will be point upwards in perpendicular direction to the field.
<h3>
What is the direction of magnetic force?</h3>
The direction of the magnetic force on negative charge occurs in the opposite direction while it is directed to the positive charge direction.
From the given image and description, the positively charged particle with a velocity vector, v is pointing left, thus we can conclude that the magnetic force will be point upwards in perpendicular direction to the field.
Learn more about magnetic force here: brainly.com/question/12488283
#SPJ4
Answer:
The horizontal speed with which the slingshot hits the balloon is approximately 57.358 m/s
Explanation:
The given parameters of the slingshot motion are;
The initial velocity of the slingshot, v = 100 m/s
The angle (to the horizontal) at which the slingshot is fired makes, θ = 55°
The path of the slingshot which hits the stationary balloon at the top of its flight = Parabolic trajectory
The horizontal component of the velocity = vₓ = v·cos(θ) = Constant
vₓ = 100 × cos(55°) ≈ 57.358
The horizontal speed with which the slingshot hits the balloon = vₓ ≈ 57.358 m/s.
A
An object at rest will remain at rest unless acted on by a force. An object in motion continues in motion with the same speed and in the same direction unless acted upon by a force.
Explanation:
Answer:
The state of matter in Gas state has the greatest amount of particle movement.
Explanation:
Matter is classified generally in three states of matter and that is solid state, liquid state and gas state. So each state has its own properties and arrangement of atoms. If we consider solid state, the atoms will be bonded very close to each other and thus the movement of particles or atoms are very much restricted in a solid state. If we consider liquid state, then the atoms will be somewhat loosely bonded compared to solid and so the particles can be somewhat flexible to move from their original position. While for gaseous state, they are the most loosely connected state and so the atoms can move as freely as possible with no restrictions. Thus the gas state of matter has the greatest amount of particle movement among the given choices.
Answer:
<em><u>0</u></em><em><u>.</u></em><em><u>9</u></em><em><u>1</u></em>
Explanation:
as equivalence resistance can be found out using the
1/Req = 1/r1 +1/r2 +1/r3......
now, 1/req= 1/2+1/3+1/4
=6/12+4/12+3/12
=13/12
i.e, req =12/13 =0.91
✌️:)