Answer:
1 percent
Explanation:
It says that only 3 percent of the water is fresh. So it can be 1 percent or 3 percent. But then it says that most of the water is locked up in glaciers and polar ice caps. So the animals would have a hard time getting to this water. So the rest is available for them. Approximately 1 percent is most reasonable.
(a) We can find the current flowing between the walls by using Ohm's law:

where

is the potential difference and

is the resistance. Substituting these values, we get

(b) The total charge flowing between the walls is the product between the current and the time interval:

The problem says

, so the total charge is

The current consists of Na+ ions, each of them having a charge of

. To find the number of ions flowing, we can simply divide the total charge by the charge of a single ion:
Answer:
A derived quantities is terms of the 7 base quantities via a system of quantity equations which are called SI derived units.
Explanation: there you go:)
For help with this answer, we look to Newton's second law of motion:
Force = (mass) x (acceleration)
Since the question seems to focus on acceleration, let's get
'acceleration' all alone on one side of the equation, so we can
really see what's going on.
Here's the equation again:
Force = (mass) x (acceleration)
Divide each side by 'mass',
and we have: Acceleration = (force) / (mass) .
Now the answer jumps out at us: The rate of acceleration of an object
is determined by the object's mass and by the strength of the net force
acting on the object.
To locate a specific target or to determine how close submarines are to the seafloor, they use active and passive sound navigation and ranging (or a SONAR, in simple terms.) It emits pulses of sound waves that travel through the water, reflect off the target and relayed back to the ship. By determining how fast the sound wave travels back, the computers on the sub calculate how far they are from the target.
Hope this helps.