Answer:
CH₂
Explanation:
Given parameters:
Percentage composition:
Carbon = 40.1%
Hydrogen = 6.6%
Unknown:
Empirical formula of the compound = ?
Solution:
The empirical formula of a substance is its simplest formula.
Elements Carbon Hydrogen
Percentage
Composition 40.1 6.6
Molecular mass 12 1
Number of moles 40.1/12 6.6/1
3.342 6.6
Divide through by
the smallest 3.342/3.342 6.6/3.342
1 2
So the empirical formula of the compound is CH₂
Answer:
This question is incomplete
Explanation:
This question is incomplete, however, the element that has 52 electrons only is Tellurium (Te) and when the electronic configuration of elements with more than 52 electrons are written, the 52nd electron is indicated/paired the same way the 52nd electron of Te is indicated/paired. Hence, while writing the electronic configuration of Te, it is written as
[Kr] 4d¹⁰ 5s² 5p⁴ where [Kr] is the electronic configuration of krypton. Based on this, we can deduce that the 52nd electron will be in the first orbital of the P subshell (as attached in the picture). This is because when indicating the electrons in the subshell, one electron will be spread across each orbital and if any electron is still remaining, it will be added starting from to the first orbital of the subshell, however no two electrons in an orbital in a subshell can have the same spin and hence must face opposite direction based on pauli's exclusion principle (as seen in attached); thus for the 5p-orbital of elements with 52 or more electrons, when one electron each is represented in each box (3 boxes in total) in the 5p-orbital, the remaining electron is paired with the the first electron in the first box of the 5p-orbital
Number of moles is defined as the ratio of given mass in g to the molar mass.
The mathematical formula is:
Number of moles =
(1)
Number of zinc atoms is equal to
, by Avogadro number, number of moles can be calculated.
As, 1 mol=
atoms, hence,

= 0.2822 mol
Now, from formula (1), calculate mass in g (molar mass of zinc = 65.4 g/mol)
0.2822 mol =
mass in g = 
= 18.45588 g
Thus, by rounding off the above number, it will come near about 19 g approximately.
Hence, option (C) is the correct answer.
<h2>
Hey There!</h2><h2>
_____________________________________</h2><h2>
Answer:</h2>

<h2>_____________________________________</h2><h2>

</h2>
London Dispersion force or Van de waals force is a temporary attractive force which are the weakest and occur between nonpolar noble gases and same charges. This force is weaker because they have more electrons that are farther from the nucleus and are able to move around easier.
<h2>_____________________________________</h2><h2>

</h2>
Dipole force is present between the polar molecules. Polar molecules are those molecules which have slightly negative and slightly positive charge. Dipole-dipole forces are attractive forces between the positive end of one polar molecule and the negative end of another polar molecule.
<h2>_____________________________________</h2><h2>

</h2>
It is a special type of dipole force present between polar molecules, it is formed between Hydrogen atom which forms positive ion, and the other negative ion. It results from the attractive force between a hydrogen atom covalently bonded to a very electronegative atom such as a N, O, or F atom. The hydrogen bond is one of the strongest intermolecular attractions, but weaker than a covalent or an ionic bond.
<h2>_____________________________________</h2><h2>Best Regards,</h2><h2>'Borz'</h2><h2 />
Answer is: D. Cl (chlorine).
The ionization energy (Ei) is the minimum amount of energy required to remove the valence electron, when element lose electrons, oxidation number of element grows (oxidation process).
Barium, potassium and arsenic are metals (easily lost valence electrons), chlorine is nonmetal (easily gain electrons).
Alkaline metals (in this example, potassium) have lowest ionizations energy and easy remove valence electrons (one electron), earth alkaline metals (in this example, barium) have higher ionization energy than alkaline metals, because they have two valence electrons.
Nonmetals (in this example chlorine) are far right in the main group and they have highest ionization energy, because they have many valence electrons.