Answer:
Explanation:
The result will be affected.
The mass of KHP weighed out was used to calculate the moles of KHP weighed out (moles = mass/molar mass).
Not all the sample is actually KHP if the KHP is a little moist, so when mass was used to determine the moles of KHP, a higher number of moles than what is actually present would be obtained (because some of that mass was not KHP but it was assumed to be so. Therefore, there is actually a less present number of moles than the certain number that was thought of.
During the titration, NaOH reacts in a 1:1 ratio with KHP. So it was determined that there was the same number of moles of NaOH was the volume used as there were KHP in the mass that was weighed out. Since there was an overestimation in the moles of KHP, then there also would be an overestimation in the number of moles of NaOH.
Thus, NaOH will appear at a higher concentration than it actually is.
The periodic table<span>, and its respective </span>melting<span> and </span>boiling points<span>. ... </span>Chemistry.2<span> The student </span>will <span>investigate and understand that the placement of elements ... </span>Families/groups<span> ... As </span>you<span> analyze </span>your <span>graph, try to </span>answer<span> the </span>following questions<span>: ... </span>period<span>. How </span>would you describe<span> the </span>trend<span> in </span>boiling point<span> as the atomic number ...</span>
Answer:
151.1J
Explanation:
Given parameters:
Mass of iron = 6.21g
Initial temperature of iron = 25°C
Final temperature of iron = 79.8°C
Unknown:
Amount of heat = ?
Solution:
The amount of heat require to cause this temperature can be determined using the expression below;
H = m c (T₂ - T₁)
H is the amount of heat
m is the mass
c is the specific heat capacity
T is the temperature
Specific heat capacity of iron 0.444J/g°C
Insert the parameters and solve;
H = 6.21 x 0.444 x (79.8 - 25)
H = 151.1J
<u>Answer:</u> The given amount of iron reacts with 9.0 moles of
and produce 6.0 moles of 
<u>Explanation:</u>
We are given:
Moles of iron = 12.0 moles
The chemical equation for the rusting of iron follows:

By Stoichiometry of the reaction:
4 moles of iron reacts with 3 moles of oxygen gas
So, 12.0 moles of iron will react with =
of oxygen gas
- <u>For iron (III) oxide:</u>
By Stoichiometry of the reaction:
4 moles of iron produces 2 moles of iron (III) oxide
So, 12.0 moles of iron will produce =
of iron (III) oxide
Hence, the given amount of iron reacts with 9.0 moles of
and produce 6.0 moles of 
There are many simple ways to prevent erosion. One of the simplest forms of preventing erosion is with vegetation and by establishing root systems that hold the soil together. You can also use geotextiles, fertilizers and also build retainer walls to keep the soil intact and prevent erosion.