Acidic and basic are two extremes that describe chemicals, just like hot and cold are two extremes that describe temperature. Mixing acids and bases can cancel out their extreme effects, much like mixing hot and cold water can even out the water temperature. A substance that is neither acidic nor basic is neutral.
The character of acidic, basic and neutral is defined by the concentration of hydrogen ions [H+](mol/L). A solution with a concentration of hydrogen ions higher than 10-7mol/L is acidic, and a solution with a lower concentration is alkaline (another way to say basic). Using the formula, pH=-log[H+], a pH of 7 is neutral, a pH less than 7 is acidic, and a pH greater than 7 is basic. As one can see from this formula, ten times a given concentration of hydrogen ions means one unit lower in terms of pH value (higher acidity), and vice versa.
The formula for ph is given by:pH=−log10[H+]
What is the concentration of H+ ions at a pH = 8?
In calculating for the concentration of hydrogen ion, the formula is given by:[H+]=(10)^(-pH)
Solution:
[H+]=(10)^(-8)[H+]=0.00000001 mol/L
What is the concentration of OH– ions at a pH = 8?pH+pOH=148+pOH=14pOH=6
[OH-]=(10)^(-pOH)[OH-]=(10)^(-6)[OH-]=0.000001
What is the ratio of H+ ions to OH– ions at a pH = 2?The ratio is 0.00000001:0.000001 which is equal to 0.01
Answer:
![K_a=\frac{[H_3O^+][HCO_3^-]}{[H_2CO_3]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH_3O%5E%2B%5D%5BHCO_3%5E-%5D%7D%7B%5BH_2CO_3%5D%7D)
Explanation:
Several rules should be followed to write any equilibrium expression properly. In the context of this problem, we're dealing with an aqueous equilibrium:
- an equilibrium constant is, first of all, a fraction;
- in the numerator of the fraction, we have a product of the concentrations of our products (right-hand side of the equation);
- in the denominator of the fraction, we have a product of the concentrations of our reactants (left-hand side o the equation);
- each concentration should be raised to the power of the coefficient in the balanced chemical equation;
- only aqueous species and gases are included in the equilibrium constant, solids and liquids are omitted.
Following the guidelines, we will omit liquid water and we will include all the other species in the constant. Each coefficient in the balanced equation is '1', so no powers required. Multiply the concentrations of the two products and divide by the concentration of carbonic acid:
![K_a=\frac{[H_3O^+][HCO_3^-]}{[H_2CO_3]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH_3O%5E%2B%5D%5BHCO_3%5E-%5D%7D%7B%5BH_2CO_3%5D%7D)
The correct answer is : The Organism belongs in Kingdom Fungi
The explanation:
1) because Fungi can be multicellular
2) most of them cannot move.
3) They can get food by releasing digestive juices into their environment.
Communicate results....................