Answer:
Orbital motion results when the object’s forward motion is balanced by a second object’s gravitational pull.
Explanation:
The gravitational force is responsible for the orbital motion of the planet, satellite, artificial satellite, and other heavenly bodies in outer space.
When an object is applied with a velocity that is equal to the velocity of the orbit at that location, the body continues to move forward. And, this motion is balanced by the gravitational pull of the second object.
The orbiting body experience a centripetal force that is equal to the gravitational force of the second object towards the body.
The velocity of the orbit is given by the relation,

Where
V - velocity of the orbit at a height h from the surface
R - Radius of the second object
G - Gravitational constant
h - height from the surface
The body will be in orbital motion when its kinetic motion is balanced by gravitational force.

Hence, the orbital motion results when the object’s forward motion is balanced by a second object’s gravitational pull.
That's wave 'diffraction'.
Explanation:
F = Gm1m2/r^2
kya nikalna hai bhai isme
It’s B. Sound travels faster through solids than liquids. Have you ever put your head on a desk, and tap the desk? That’s an example of it going faster through solids
The horizontal force is m*v²/Lh, where m is the total mass. The vertical force is the total weight (233 + 840)N.
<span>Fx = [(233 + 840)/g]*v²/7.5 </span>
<span>v = 32.3*2*π*7.5/60 m/s = 25.37 m/s </span>
<span>The horizontal component of force from the cables is Th + Ti*sin40º and the vertical component of force from the cable is Ta*cos40º </span>
<span>Thh horizontal and vertical forces must balance each other. First the vertical components: </span>
<span>233 + 840 = Ti*cos40º </span>
<span>solve for Ti. (This is the answer to the part b) </span>
<span>Horizontally </span>
<span>[(233 + 840)/g]*v²/7.5 = Th + Ti*sin40º </span>
<span>Solve for Th </span>
<span>Th = [(233 + 840)/g]*v²/7.5 - Ti*sin40º </span>
<span>using v and Ti computed above.</span>