For vertical motion, use the following kinematics equation:
H(t) = X + Vt + 0.5At²
H(t) is the height of the ball at any point in time t for t ≥ 0s
X is the initial height
V is the initial vertical velocity
A is the constant vertical acceleration
Given values:
X = 1.4m
V = 0m/s (starting from free fall)
A = -9.81m/s² (downward acceleration due to gravity near the earth's surface)
Plug in these values to get H(t):
H(t) = 1.4 + 0t - 4.905t²
H(t) = 1.4 - 4.905t²
We want to calculate when the ball hits the ground, i.e. find a time t when H(t) = 0m, so let us substitute H(t) = 0 into the equation and solve for t:
1.4 - 4.905t² = 0
4.905t² = 1.4
t² = 0.2854
t = ±0.5342s
Reject t = -0.5342s because this doesn't make sense within the context of the problem (we only let t ≥ 0s for the ball's motion H(t))
t = 0.53s
Answer:
Bow Line
Explanation:
If the wind or current is pushing your boat away from the dock, bow line should be secured first.
1- We should cast off the bow and stern lines.
2-With the help of an oar or boat hook, keep the boat clear of the dock.
3-Leave the boat on its own for sometime and let the wind or current carry the boat away from the dock.
4 - As you see there is sufficient clearance, shift into forward gear and slowly leave the area.
Check Khan Academy, they have explanations,notes,videos,quizzes and much more
Answer:
3.24×10⁸ J, or 324 MJ
Explanation:
"kWh" is a kilowatt-hour. It's the energy used by 1 kilowatt of power after one hour.
A kilowatt is a kilojoule per second.
90 kWh
= 90 kW × 1 hr
= 90 kJ/s × 1 hr
= 90 kJ/s × 3600 s
= 324,000 kJ
= 324,000,000 J
The energy is 3.24×10⁸ J, or 324 megajoules.