1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PilotLPTM [1.2K]
3 years ago
6

I need help with high school chemistry!!! Can someone help

Physics
1 answer:
Aleks04 [339]3 years ago
3 0
I can see what i can do if you need assistance
You might be interested in
A mass of 267 g is attached to a spring and set into simple harmonic motion with a period of 0.176 s. If the total energy of the
Gnoma [55]

Answer:

(a) 7.1 m /sec

(b) 339.9 N/m

(c) 19.91 cm

Explanation:

We have given mass m = 267 gram = 0.267 kg

Time period T = 0.176 sec

Total energy of the oscillating  system = 6.74 J

We know that energy is given by

(a) Ke=\frac{1}{2}mv_{max}^2

6.74=\frac{1}{2}\times 0.267\times v_{max}^2

v_{max}=7.1m/sec

(b) Now \omega =\frac{2\pi }{T}=\frac{2\times 3.14}{0.176}=35.681rad/sec

We know that \omega =\sqrt{\frac{k}{m}}

35.68=\sqrt{\frac{k}{0.267}}

k=339.9N/m

(c) We know that energy is given by

E=\frac{1}{2}KA^2

6.74=\frac{1}{2}\times 339.9\times A^2

A=19.91cm

4 0
2 years ago
Assuming no air resistance, how far will a 0.0010 kg raindrop have fallen when it hits the ground 30.0 s later. Assume g = 9.8 m
Serga [27]
D = (1/2)·at²
where d is the distance fallen, a is the acceleration (g in this problem), and t is the time
d = (1/2)·(9.8 m/s²)·(30 s)² = (1/2)·(9.8)·(900) m
d = 4410 m
The answer is b) 4410 m

Note: the mass of the raindrop is irrelevant since the acceleration due to gravity is independent of mass. (Galileo's Leaning Tower of Pisa experiment)
6 0
3 years ago
Read 2 more answers
In case A below, a 1 kg solid sphere is released from rest at point S. It rolls without slipping down the ramp shown, and is lau
mestny [16]

Answer:

the block reaches higher than the sphere

\frac{y_{sphere}} {y_block} = 5/7

Explanation:

We are going to solve this interesting problem

A) in this case a sphere rolls on the ramp, let's find the speed of the center of mass at the exit of the ramp

Let's use the concept of conservation of energy

starting point. At the top of the ramp

         Em₀ = U = m g y₁

final point. At the exit of the ramp

         Em_f = K + U = ½ m v² + ½ I w² + m g y₂

notice that we include the translational and rotational energy, we assume that the height of the exit ramp is y₂

energy is conserved

          Em₀ = Em_f

         m g y₁ = ½ m v² + ½ I w² + m g y₂

angular and linear velocity are related

        v = w r

the moment of inertia of a sphere is

         I = \frac{2}{5} m r²

we substitute

         m g (y₁ - y₂) = ½ m v² + ½ (\frac{2}{5} m r²) (\frac{v}{r})²

         m g h = ½ m v² (1 + \frac{2}{5})

where h is the difference in height between the two sides of the ramp

h = y₂ -y₁

         mg h = \frac{7}{5} (\frac{1}{2} m v²)

         v = √5/7  √2gh

This is the exit velocity of the vertical movement of the sphere

         v_sphere = 0.845 √2gh

B) is the same case, but for a box without friction

   starting point

          Em₀ = U = mg y₁

   final point

          Em_f = K + U = ½ m v² + m g y₂

          Em₀ = Em_f

          mg y₁ = ½ m v² + m g y₂

          m g (y₁ -y₂) = ½ m v²

          v = √2gh

this is the speed of the box

          v_box = √2gh

to know which body reaches higher in the air we can use the kinematic relations

          v² = v₀² - 2 g y

at the highest point v = 0

           y = vo₀²/ 2g

for the sphere

           y_sphere = 5/7 2gh / 2g

           y_esfera = 5/7 h

for the block

           y_block = 2gh / 2g

            y_block = h

       

therefore the block reaches higher than the sphere

         \frac{y_{sphere}} {y_bolck} = 5/7

3 0
3 years ago
A compass taken to Earth's moon does not point in a specific direction on the moon.
yKpoI14uk [10]
C) the moon does not have a strong magnetic field
5 0
2 years ago
Read 2 more answers
Two electric charges, held a distance, dd, apart experience an electric force of magnitude, FF, between them. If one of the char
lorasvet [3.4K]

Answer:

F'=2F

Explanation:

The Coulomb's law states that the magnitude of the electrostatic force between two charges is directly proportional to the product of the magnitudes of charges and inversely proportional to the square of the distance between them:

F=\frac{kq_1q_2}{d^2}

In this case, we have q_1'=2q_1:

F'=\frac{kq'_1q_2}{d^2}\\F'=\frac{k(2q_1)q_2}{d^2}\\F'=2\frac{kq_1q_2}{d^2}\\F'=2F

3 0
3 years ago
Other questions:
  • Newton's law of gravitation says that the magnitude f of the force exerted by a body of mass m on a body of mass m is f = gmm r2
    14·1 answer
  • Gamma rays have a _____ frequency and a _____ wavelength.
    14·2 answers
  • Question 11(Multiple Choice Worth 3 points)
    12·1 answer
  • What are four main ways weathering can happen
    13·1 answer
  • Which activity would help maintain homeostasis during exercise?
    5·2 answers
  • A 10 kg computer accelerates at a rate of 5 m/s2. How much force was applied to the computer?​
    13·2 answers
  • Incentives influence people's economic decisions by:
    5·2 answers
  • In which of the following situations is the Doppler Effect absent?
    12·1 answer
  • A 5kg box slides across the floor with an initial velocity of 5m/s. If the coefficient of kinetic friction between the box and t
    12·1 answer
  • Please solve the Problem.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!