Quantum numbers<span> allow us to both simplify and dig deeper into electron configurations. Electron configurations allow us to identify energy level, subshell, and the number of electrons in those locations. If you choose to go a bit further, you can also add in x,y, or z subscripts to describe the exact orbital of those subshells (for example </span><span>2<span>px</span></span>). Simply put, electron configurations are more focused on location of electrons then anything else.
<span>
Quantum numbers allow us to dig deeper into the electron configurations by allowing us to focus on electrons' quantum nature. This includes such properties as principle energy (size) (n), magnitude of angular momentum (shape) (l), orientation in space (m), and the spinning nature of the electron. In terms of connecting quantum numbers back to electron configurations, n is related to the energy level, l is related to the subshell, m is related to the orbital, and s is due to Pauli Exclusion Principle.</span>
Current flow depends on other things in addition to the circuit configuration.
If the SAME voltage is applied to some arrangement of the SAME components, the greatest current will occur when they are all in parallel.
Answer:
The diameter of the camera aperture must be greater than or equal to 1.49m
Explanation:
Let the distance separating two objects, x = 6.0 cm = 0.06 m
The distance between the observer and the two objects, d = 160 km = 160000 m
Let ∅ = minimum angular separation between the two objects that the satellite can resolve
tan( ∅) = x/d
Since there is minimum angular separation, tan( ∅) ≈∅
∅ = x/d
∅ = 0.06/160000
∅ = 3.75 * 10⁻⁷rad
For the satellite to be able to resolve the objects,
D ≥ 1.22λ/∅
λ = 560 nm = 560 * 10⁻⁹
D ≥ 1.22 * (560 * 10⁻⁹)/(3.75 * 10⁻⁷)
D ≥ 149.33 * 10⁻² m
D ≥ 1.49 m