The greater the mass the greater is inertia.
Answer:
The maximum power density in the reactor is 37.562 KW/L.
Explanation:
Given that,
Height = 10 ft = 3.048 m
Diameter = 10 ft = 3.048 m
Flux = 1.5
Power = 835 MW
We need to calculate the volume of cylinder
Using formula of volume

Put the value into the formula


We need to calculate the maximum power density in the reactor
Using formula of power density

Where, P = power density
E = energy
V = volume
Put the value into the formula


Hence, The maximum power density in the reactor is 37.562 KW/L.
Answer:
2.1406 ×
m/sec
Explanation:
we know that energy is always conserved
so from the law of energy conservation

here V is the potential difference
we know that mass of proton = 1.67×
kg
we have given speed =50000m/sec
so potential difference 
now mass of electron =9.11×
so for electron

so the velocity of electron will be 2.1406×
m/sec
An applied force<span> is a </span>force<span> that is </span>applied<span> to an object by a person or another object.
An attractive force is a force of an attraction (where object are attracted by each other). Gravitation is an example of attractive force.
</span>Normal force<span> is the component, perpendicular to the surface (surface being a plane) of contact.
</span><span>The softball experiences an applied force as a result of Amy’s throw. As the ball moves, it experiences attractive force from the air it passes through. It also experiences a downward pull because of the normal force.
Solution A.</span>