Aluminum mixed iron .Al + fe = AlFe3
Answer:
Option D. 30 g
Explanation:
The balanced equation for the reaction is given below:
2Na + S —> Na₂S
Next, we shall determine the masses of Na and S that reacted from the balanced equation. This is can be obtained as:
Molar mass of Na = 23 g/mol
Mass of Na from the balanced equation = 2 × 23 = 46 g
Molar mass of S = 32 g/mol
Mass of S from the balanced equation = 1 × 32 = 32 g
SUMMARY:
From the balanced equation above,
46 g of Na reacted with 32 g of S.
Finally, we shall determine the mass sulphur, S needed to react with 43 g of sodium, Na. This can be obtained as follow:
From the balanced equation above,
46 g of Na reacted with 32 g of S.
Therefore, 43 g of Na will react with = (43 × 32)/46 = 30 g of S.
Thus, 30 g of S is needed for the reaction.
Answer:
32.92 moles of Mg
Explanation:
To convert grams to moles (Or vice versa) of any chemical compound we need to use the molar mass of the substance (That is, how many grams weighs 1 mole of the chemical).
The magnesium, Mg, has a molar mass of 24.305g/mol. That means in 800.0g of Mg you have:
800.0g * (1mol / 24.305g) =
<h3>32.92 moles of Mg</h3>
Firstly we need to determine the partial pressure of O2:

We will now use the Henry's Law equation to determine the solubility of the gas:

Answer: Solubility is 2.7x10^-3 M
Answer:
The answer to your question is: density = 4 g/cm³
Explanation:
Data
Volume = 100 cm³
Mass = 400 g
Density = ?
Formula
density = mass/volume
substitution
density = 400/100 = 4 g/cm³