Th statement represented above : In a solution, the solvent is present in the larger amount is definitely FALSE. I choose this answer as a correct one as it also could be a solutions of alcohol ot for example <span>walter which means it's not so solid and liquid respectively. Hope it's clear! Regards!</span>
Answer:
2 m/s^2
Explanation:
a = v^2/r
a = (10m/s)^2 / 50m
a = 2 m/s^2
Leave a like and mark brainliest if this helped
Leave a like and mark brainliest if this helped
Answer:
Velocity is a change in displacement over change in time and uses the units m/s.
Both are rates of change and can be positive or negative.
Acceleration is a change in velocity over change in time and uses the units m/s².
Explanation:
Velocity is the change in displacement over change in time, this makes it a rate of change. It can be positive or negative because it is a vector quantity. It uses the units m/s because that is a displacement unit over a time unit.
Acceleration is the change in velocity over change in time, this makes it a rate of change. It can be positive or negative because it is also a vector quantity. It uses the units m/s² (m/s/s) because that is a velocity unit over a time unit.
Answer:
Tha ball- earth/floor system.
Explanation:
The force acting on the ball is the force of gravity when ignoring air resistance. At the moment the player releases the ball, until it reaches the top of its bounce, the small system for which the momentum is conserved is the ball- floor system. The balls exerts and equal and opposite force on the floor. <u>Here the ball hits the floor, because in any collision the momentum is conserved. Moment of the ball -floor system is conserved</u>. Mutual gravitation bring the ball and floor together in one system. As the ball moves downwards, the earth moves upwards, although with an acceleration on the order of 1025 times smaller than that of the ball. The two objects meet, rebound and separate.
Answer:
The frictional torque is 
Explanation:
From the question we are told that
The mass attached to one end the string is 
The mass attached to the other end of the string is 
The radius of the disk is 
At equilibrium the tension on the string due to the first mass is mathematically represented as

substituting values


At equilibrium the tension on the string due to the mass is mathematically represented as



The frictional torque that must be exerted is mathematically represented as

substituting values

