Answer:
a) 0 < r < R: E = 0, R < r < 2R: E = KQ/r^2, r > 2R: E = 2KQ/r^2
b) See the picture
Explanation:
We can use Gauss's law to find the electric field in all the regions:
EA = qen/e0 where qen is the enclosed charge
Remember that the electric field everywhere outside a sphere is:
E(r) = q/(4*pi*eo*r^2) = Kq/r^2
a)
- For 0 < r < R: There is not enclosed charge because all of it remains on the outer layer of the conducting sphere, therefore E = 0 EA = 0/e0 = 0 E = 0
- For R < r < 2R: Here the enclosed charge is equal Q E = Q/(4*pi*eo*r^2) = KQ/r^2
- For r > 2R: Here the enclosed charge is equal 2Q E = Q/(4*pi*eo*r^2) + Q/(4*pi*eo*r^2) = 2Q/(4*pi*eo*r^2) = 2KQ/r^2
b) At the beginning there is no electric field this is why you see a line in zero, In R the electric field is maximum and then it starts to decrease exponentially with the distance and finally in 2R the field increase a little due to the second sphere to then continue decreasing exponentially with the distance
U = 6.5 m/s, initial speed
t = 3.6 s, time
a = 0.92 m/s², acceleration
Let v = the final velocity.
Then
v = u +at
v = (6.5 m/s) + (0.92 m/s²)*(3.6 s) = 9.812 m/s
Answer: 9.81 m/s
First bacterial cells are usually much smaller than plant or animal cells. a human skin cells , for example is about times as larger as an average bacterial cell.
To solve this problem it is necessary to apply the kinematic equations of linear and angular motion, as well as the given definitions of the period.
Centripetal acceleration can be found through the relationship
Where
v = Tangential Velocity
R = Radius
At the same time linear velocity can be expressed in terms of angular velocity as
Where,
R = Radius
Angular Velocity
PART A) From this point on, we can use the values used for the period given in the exercise because the angular velocity by definition is described as
T = Period
So replacing we have to
Since
Then the radius in meters would be
Then the centripetal acceleration would be
From the result obtained, considering that it is an unimaginably low value of an order of less than it is possible to conclude that it supports the assertion on the inertial reference frame.
Well the density is mass/volume
100/20 = 5
The density is 5