Answer:
a + b = 12
Step-by-step explanation:
Given
Quadrilateral;
Vertices of (0,1), (3,4) (4,3) and (3,0)
![Perimeter = a\sqrt{2} + b\sqrt{10}](https://tex.z-dn.net/?f=Perimeter%20%3D%20a%5Csqrt%7B2%7D%20%2B%20b%5Csqrt%7B10%7D)
Required
![a + b](https://tex.z-dn.net/?f=a%20%2B%20b)
Let the vertices be represented with A,B,C,D such as
A = (0,1); B = (3,4); C = (4,3) and D = (3,0)
To calculate the actual perimeter, we need to first calculate the distance between the points;
Such that:
AB represents distance between point A and B
BC represents distance between point B and C
CD represents distance between point C and D
DA represents distance between point D and A
Calculating AB
Here, we consider A = (0,1); B = (3,4);
Distance is calculated as;
![Distance = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}](https://tex.z-dn.net/?f=Distance%20%3D%20%5Csqrt%7B%28x_1%20-%20x_2%29%5E2%20%2B%20%28y_1%20-%20y_2%29%5E2%7D)
![(x_1,y_1) = A(0,1)](https://tex.z-dn.net/?f=%28x_1%2Cy_1%29%20%3D%20A%280%2C1%29)
![(x_2,y_2) = B(3,4)](https://tex.z-dn.net/?f=%28x_2%2Cy_2%29%20%3D%20B%283%2C4%29)
Substitute these values in the formula above
![Distance = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}](https://tex.z-dn.net/?f=Distance%20%3D%20%5Csqrt%7B%28x_1%20-%20x_2%29%5E2%20%2B%20%28y_1%20-%20y_2%29%5E2%7D)
![AB = \sqrt{(0 - 3)^2 + (1 - 4)^2}](https://tex.z-dn.net/?f=AB%20%3D%20%5Csqrt%7B%280%20-%203%29%5E2%20%2B%20%281%20-%204%29%5E2%7D)
![AB = \sqrt{( - 3)^2 + (-3)^2}](https://tex.z-dn.net/?f=AB%20%3D%20%5Csqrt%7B%28%20-%203%29%5E2%20%2B%20%28-3%29%5E2%7D)
![AB = \sqrt{9+ 9}](https://tex.z-dn.net/?f=AB%20%3D%20%5Csqrt%7B9%2B%209%7D)
![AB = \sqrt{18}](https://tex.z-dn.net/?f=AB%20%3D%20%5Csqrt%7B18%7D)
![AB = \sqrt{9*2}](https://tex.z-dn.net/?f=AB%20%3D%20%5Csqrt%7B9%2A2%7D)
![AB = \sqrt{9}*\sqrt{2}](https://tex.z-dn.net/?f=AB%20%3D%20%5Csqrt%7B9%7D%2A%5Csqrt%7B2%7D)
![AB = 3\sqrt{2}](https://tex.z-dn.net/?f=AB%20%3D%203%5Csqrt%7B2%7D)
Calculating BC
Here, we consider B = (3,4); C = (4,3)
Here,
![(x_1,y_1) = B (3,4)](https://tex.z-dn.net/?f=%28x_1%2Cy_1%29%20%3D%20B%20%283%2C4%29)
![(x_2,y_2) = C(4,3)](https://tex.z-dn.net/?f=%28x_2%2Cy_2%29%20%3D%20C%284%2C3%29)
Substitute these values in the formula above
![Distance = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}](https://tex.z-dn.net/?f=Distance%20%3D%20%5Csqrt%7B%28x_1%20-%20x_2%29%5E2%20%2B%20%28y_1%20-%20y_2%29%5E2%7D)
![BC = \sqrt{(3 - 4)^2 + (4 - 3)^2}](https://tex.z-dn.net/?f=BC%20%3D%20%5Csqrt%7B%283%20-%204%29%5E2%20%2B%20%284%20-%203%29%5E2%7D)
![BC = \sqrt{(-1)^2 + (1)^2}](https://tex.z-dn.net/?f=BC%20%3D%20%5Csqrt%7B%28-1%29%5E2%20%2B%20%281%29%5E2%7D)
![BC = \sqrt{1 + 1}](https://tex.z-dn.net/?f=BC%20%3D%20%5Csqrt%7B1%20%2B%201%7D)
![BC = \sqrt{2}](https://tex.z-dn.net/?f=BC%20%3D%20%5Csqrt%7B2%7D)
Calculating CD
Here, we consider C = (4,3); D = (3,0)
Here,
![(x_1,y_1) = C(4,3)](https://tex.z-dn.net/?f=%28x_1%2Cy_1%29%20%3D%20C%284%2C3%29)
![(x_2,y_2) = D (3,0)](https://tex.z-dn.net/?f=%28x_2%2Cy_2%29%20%3D%20D%20%283%2C0%29)
Substitute these values in the formula above
![Distance = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}](https://tex.z-dn.net/?f=Distance%20%3D%20%5Csqrt%7B%28x_1%20-%20x_2%29%5E2%20%2B%20%28y_1%20-%20y_2%29%5E2%7D)
![CD = \sqrt{(4 - 3)^2 + (3 - 0)^2}](https://tex.z-dn.net/?f=CD%20%3D%20%5Csqrt%7B%284%20-%203%29%5E2%20%2B%20%283%20-%200%29%5E2%7D)
![CD = \sqrt{(1)^2 + (3)^2}](https://tex.z-dn.net/?f=CD%20%3D%20%5Csqrt%7B%281%29%5E2%20%2B%20%283%29%5E2%7D)
![CD = \sqrt{1 + 9}](https://tex.z-dn.net/?f=CD%20%3D%20%5Csqrt%7B1%20%2B%209%7D)
![CD = \sqrt{10}](https://tex.z-dn.net/?f=CD%20%3D%20%5Csqrt%7B10%7D)
Lastly;
Calculating DA
Here, we consider C = (4,3); D = (3,0)
Here,
![(x_1,y_1) = D (3,0)](https://tex.z-dn.net/?f=%28x_1%2Cy_1%29%20%3D%20D%20%283%2C0%29)
![(x_2,y_2) = A (0,1)](https://tex.z-dn.net/?f=%28x_2%2Cy_2%29%20%3D%20A%20%280%2C1%29)
Substitute these values in the formula above
![Distance = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}](https://tex.z-dn.net/?f=Distance%20%3D%20%5Csqrt%7B%28x_1%20-%20x_2%29%5E2%20%2B%20%28y_1%20-%20y_2%29%5E2%7D)
![DA = \sqrt{(3 - 0)^2 + (0 - 1)^2}](https://tex.z-dn.net/?f=DA%20%3D%20%5Csqrt%7B%283%20-%200%29%5E2%20%2B%20%280%20-%201%29%5E2%7D)
![DA = \sqrt{(3)^2 + (- 1)^2}](https://tex.z-dn.net/?f=DA%20%3D%20%5Csqrt%7B%283%29%5E2%20%2B%20%28-%201%29%5E2%7D)
![DA = \sqrt{9 + 1}](https://tex.z-dn.net/?f=DA%20%3D%20%5Csqrt%7B9%20%2B%20%201%7D)
![DA = \sqrt{10}](https://tex.z-dn.net/?f=DA%20%3D%20%5Csqrt%7B10%7D)
The addition of the values of distances AB, BC, CD and DA gives the perimeter of the quadrilateral
![Perimeter = 3\sqrt{2} + \sqrt{2} + \sqrt{10} + \sqrt{10}](https://tex.z-dn.net/?f=Perimeter%20%3D%203%5Csqrt%7B2%7D%20%2B%20%5Csqrt%7B2%7D%20%2B%20%5Csqrt%7B10%7D%20%2B%20%5Csqrt%7B10%7D)
![Perimeter = 4\sqrt{2} + 2\sqrt{10}](https://tex.z-dn.net/?f=Perimeter%20%3D%204%5Csqrt%7B2%7D%20%2B%202%5Csqrt%7B10%7D)
Recall that
![Perimeter = a\sqrt{2} + b\sqrt{10}](https://tex.z-dn.net/?f=Perimeter%20%3D%20a%5Csqrt%7B2%7D%20%2B%20b%5Csqrt%7B10%7D)
This implies that
![a\sqrt{2} + b\sqrt{10} = 4\sqrt{2} + 2\sqrt{10}](https://tex.z-dn.net/?f=a%5Csqrt%7B2%7D%20%2B%20b%5Csqrt%7B10%7D%20%3D%204%5Csqrt%7B2%7D%20%2B%202%5Csqrt%7B10%7D)
By comparison
![a\sqrt{2} = 4\sqrt{2}](https://tex.z-dn.net/?f=a%5Csqrt%7B2%7D%20%3D%204%5Csqrt%7B2%7D)
Divide both sides by ![\sqrt{2}](https://tex.z-dn.net/?f=%5Csqrt%7B2%7D)
![a = 4](https://tex.z-dn.net/?f=a%20%3D%204)
By comparison
![b\sqrt{10} = 2\sqrt{10}](https://tex.z-dn.net/?f=b%5Csqrt%7B10%7D%20%3D%202%5Csqrt%7B10%7D)
Divide both sides by ![\sqrt{10}](https://tex.z-dn.net/?f=%5Csqrt%7B10%7D)
![b = 2](https://tex.z-dn.net/?f=b%20%3D%202)
Hence,
a + b = 2 + 10
a + b = 12