Answer: d. 8.25 m/s
Explanation:
We are given that Current= 5 m/s in j direction
Velocity= 8 m/s i + 3 m/s j
Now, we have to find Jada's speed with respect to the water.
First we find Jada's velocity with respect to water
v= (8 i + 3 j) - (5 j)
v= 8i - 2 j
To find the speed, we take the magnitude of this velocity vector we have
|v|= 
|v|=
= 8.246 m/s
which comes out to be around = 8.25 m/s
So option d is correct.
That depends on how far it is from the nearest planet. If it's on the surface of Earth, it weighs (19 kg) x (9.8 m/s^2) = 186.2 newtons.
Answer:
The ball thrown downward
Explanation:
When the ball is thrown vertically, the acceleration of it is the gravity acceleration independent if it is thrown downward or upward. However, the acceleration is a vector, so, when the ball is thrown upward, the movement is against the gravity, so the acceleration is negative, and so, the velocity decreases during time; and when the ball is thrown downward, the movement goes to the gravity, so the acceleration is positive, so the velocity increase after time passes.
Answer:
Hold on Ill answer it..When do u need it by
Explanation:
Newton's third law states that for every action, there is an equal and opposite reaction. When you let go of the ballon, you are letting the force out but the force also pushes the balloon back.