Answer:
Correct answer: Ek = 2,028.6 J
Explanation:
Ek = m v²/2 = 0.023 · 220² = 0.023 · 176,400/2 = 2,028.6 J
God is with you!!!
Answer:
The velocity of the cart at the bottom of the ramp is 1.81m/s, and the acceleration would be 3.30m/s^2.
Explanation:
Assuming the initial velocity to be zero, we can obtain the velocity at the bottom of the ramp using the kinematics equations:

Dividing the second equation by the first one, we obtain:

And, since
, then:

It means that the velocity at the bottom of the ramp is 1.81m/s.
We could use this data, plus any of the two initial equations, to determine the acceleration:

So the acceleration is 3.30m/s^2.
Answer:
the mass of the body is 0.02 kg.
Explanation:
Given;
relative density of the oil,
= 0.875
mass of the object in oil,
= 0.013 kg
mass of the object in water,
= 0.012 kg
let the mass of the object in air = 
weight of the oil, 
weight of the water, 
The relative density of the oil is given as;

Therefore, the mass of the body is 0.02 kg.
Answer:
The model, called the kinetic theory of gases, assumes that the molecules are very small relative to the distance between molecules. ... The molecules are in constant random motion, and there is an energy (mass x square of the velocity) associated with that motion. The higher the temperature, the greater the motion.
First we will find the speed of the ball just before it will hit the floor
so in order to find the speed of the cart we will first use energy conservation



So by solving above equation we will have

now in order to find the momentum we can use


