Radio waves, gamma-rays, visible light, and all the other parts of the electromagnetic spectrum are electromagnetic radiation. Electromagnetic radiation can be described in terms of a stream of mass-less particles, ...
The electromagnetic spectrum is a map of all the types of light that we can identify. It separates all the types of light by wavelength because that directly relates to how energetic the wave is. More energetic wave
For most of history, visible light was the only known part of the electromagnetic spectrum. The ancient Greeks recognized that light traveled in straight lines and studied some of its properties, including reflection
They both have a certain force. They are different because that force is different
I have two (2) brilliant ideas:
1). Inside the metal that the body of the car is made of, and also between the two sheets of glass that the windows are made of, install a thin layer of material that absorbs RF (radio-wave) energy . . . like the material in the glass window of your microwave oven. Then, no radio waves from the cellular base station can get INTO the car, and no radio waves from your phone can get OUT of the car. The phone can't make a connection to the cellular network, you can't make or receive calls, and you can't connect to Instagram or Brainly, so you might as well just turn it off and save your battery until next time you're outside your car.
2). Somewhere inside the car, like under the dash or in the glove box, install a teeny tiny radio receiver that can recognize the signals coming OUT of your phone. Connect it to the car's electrical system so that when it hears signals from phones inside the car, it it shuts down the car's motor so you can't start or drive. The car only works when phones inside the car are either turned off or in Airplane Mode.
My ideas are so brilliant that I really should patent them, or copyright them, or whatever you do so that other people have to pay you to use your idea. But if you want to use them, that's OK. Just go ahead. I won't mind.
The answers to your question are,
Independent, Dependent, and Control.
-Mabel <3
Answer: The height above the release point is 2.96 meters.
Explanation:
The acceleration of the ball is the gravitational acceleration in the y axis.
A = (0, -9.8m/s^)
For the velocity we can integrate over time and get:
V(t) = (9.20m/s*cos(69°), -9.8m/s^2*t + 9.20m/s^2*sin(69°))
for the position we can integrate it again over time, but this time we do not have any integration constant because the initial position of the ball will be (0,0)
P(t) = (9.20*cos(69°)*t, -4.9m/s^2*t^2 + 9.20m/s^2*sin(69°)*t)
now, the time at wich the horizontal displacement is 4.22 m will be:
4.22m = 9.20*cos(69°)*t
t = (4.22/ 9.20*cos(69°)) = 1.28s
Now we evaluate the y-position in this time:
h = -4.9m/s^2*(1.28s)^2 + 9.20m/s^2*sin(69°)*1.28s = 2.96m
The height above the release point is 2.96 meters.