Answer:
Magnetic field, B = 0.042 T
Explanation:
It is given that,
Speed of charged particle, 
Angle between velocity and the magnetic field, 
Charge, 
Magnetic force, F = 0.002 N
The magnetic force is given by :

B is the magnetic field


B = 0.042 T
So, the strength of the magnetic field is 0.042 Tesla. Hence, this is the required solution.
A system that repeats to and from its mean or rest point. that executes harmonic motion. a few examples I've heard of are since the springtime a mass-spring system,a swing, simple pendulum, one more example is a steel ball rolling in a curved is this what you need or do you need three more sentences dish. to get S.H.M a body just displaced away from the resting position and of course then is released. the human body oscillates due to the reinforce that pulls it back do you need anything else answered on this and I'll answer it
Answer:0.669
Explanation:
Given
mass of clock 93 kg
Initial force required to move it 610 N
After clock sets in motion it requires a force of 514 N to keep moving it with a constant velocity
Initially static friction is acting which is more than kinetic friction
thus 613 force is required to overcome static friction


I think the answer would be: The G-note's wavelength is longer
Here are the formula to calculate wavelength
Wavelength = Wave speed/Frequency
Which indicates that the wavelength will become larger as the frequency became smaller.
The diameter of the column of the water as it hits the bucket is 4.04 cm
The equation of continuity occurs in the fluid system and it asserts that the inflow and the outflow of the volume rate at the inlet and at the outlet of the system are equal.
By using the kinematics equation to determine the speed of the water in the bucket and applying the equation of continuity to estimate the diameter of the column, we have the following;
Using the kinematics equation:




From the equation of continuity:







Since diameter = 2r;
∴
The diameter of the column of the water is:
= 2(2.02) cm
= 4.04 cm
Learn more about the equation of continuity here:
brainly.com/question/10822213