Answer:
a) y₂ = 49.1 m
, t = 1.02 s
, b) y = 49.1 m
, t= 1.02 s
Explanation:
a) We will solve this problem with the missile launch kinematic equations, to find the maximum height, at this point the vertical speed is zero
² =
² - 2 g (y –yo)
The origin of the coordinate system is on the floor and the ball is thrown from a height
y-yo =
=
- g t
t =
/ g
t = 10 / 9.8
t = 1.02 s
b) the maximum height
y- 44.0 =
² / 2 g
y - 44.0 = 5.1
y = 5.1 +44.0
y = 49.1 m
The time is the same because it does not depend on the initial height
t = 1.02 s
Answer:
Well this is tough. I'm not sure but you are smart and can push through it. YOU DONT need the someone telling you the answer when it is inside you.
hope this helps p
Answer:
Feathers are great thermal insulators.
Explanation:
Feathers are great thermal insulators. The loose structure of down feathers traps air.
As a result, energy cannot be transmitted easily through down feathers. This means birds are insulated from cold air outside, plus their body heat doesn't escape easily either.
Human beings discovered that down feathers are good for insulation long ago. For example, documents from the 1600s show that Russian merchants sold “bird down" to the Dutch hundreds of years ago.
Today, down is used in all sorts of products, including coats, bedding, and sleeping bags, to help better insulate the user from cold weather. Down can be collected from many different types of birds, but most of today's supply comes from domestic geese.
If you have a down coat or comforter, is it all down? In the United States, laws require that products labeled “100 percent down" contain only down feathers.
If your product is labeled “down," it can contain a mixture of both down feathers and synthetic fibers. Not all down feathers are created equal, though.
Down insulation is rated on a measure called “fill power." The higher the fill power, the more the down insulates.
The highest fill-power rating — 1200 — goes to eiderdown, which comes from the Common Eider duck. Eiderdown tends to be expensive.
Answer:
l= 4 mi : width of the park
w= 1 mi : length of the park
Explanation:
Formula to find the area of the rectangle:
A= w*l Formula(1)
Where,
A is the area of the rectangle in mi²
w is the width of the rectangle in mi
l is the width of the rectangle in mi
Known data
A = 4 mi²
l = (w+3)mi Equation (1)
Problem development
We replace the data in the formula (1)
A= w*l
4 = w* (w+3)
4= w²+3w
w²+3w-4= 0
We factor the equation:
We look for two numbers whose sum is 3 and whose multiplication is -4
(w-1)(w+4) = 0 Equation (2)
The values of w for which the equation (2) is zero are:
w = 1 and w = -4
We take the positive value w = 1 because w is a dimension and cannot be negative.
w = 1 mi :width of the park
We replace w = 1 mi in the equation (1) to calculate the length of the park:
l= (w+3) mi
l= ( 1+3) mi
l= 4 mi