Answer:
v' = 1.5 m/s
Explanation:
given,
mass of the bullet, m = 10 g
initial speed of the bullet, v = 300 m/s
final speed of the bullet after collision, v' = 300/2 = 150 m/s
Mass of the block, M = 1 Kg
initial speed of the block, u = 0 m/s
velocity of the block after collision, u' = ?
using conservation of momentum
m v + Mu = m v' + M u'
0.01 x 300 + 0 = 0.01 x 150 + 1 x v'
v' = 0.01 x 150
v' = 1.5 m/s
Speed of the block after collision is equal to v' = 1.5 m/s
Answer:
The time taken for the train to cross the bridge is 9.01 s
Explanation:
Given;
length of the train, L₁ = 90 m
length of the bridge, L₂ = 0.06 m
speed of the train, v = 10 m/s
Total distance to be traveled, = L₁ + L₂
= 90 m + 0.06 m
= 90.06 m
Time of motion = Distance / speed
Time of motion = 90.06 / 10
Time of motion = 9.006 s ≅ 9.01 s
Therefore, the time taken for the train to cross the bridge is 9.01 s