Answer:

Explanation:
Let assume that air behaves ideally. The equation of state of ideal gases is:

Where:
- Pressure, in kPa.
- Volume, in m³.
- Quantity of moles, in kmol.
- Ideal gas constant, in
.
- Temperature, in K.
Since there is no changes in pressure or the quantity of moles, the following relationship between initial and final volumes and temperatures is built:

The final temperature is:



Bohr's equation for the change in energy is

where
h = Planck's constant
c == the velocity of light
λ = wavelength.
The velocity is related to wavelength and frequency, f, by
c = fλ
Let us examine the given answers on the basis of the given equations.
a. As λ increases, f decreases and ΔE decreases.
TRUE
b. As λ increases, f increases and ΔE increases.
FALSE
c. As λ increases, f increases and ΔE decreases.
FALSE
Answer:
As the wavelength increases, the frequency decreases and energy decreases.
The frequency of bird chirping hear by hiran will be 1.77 kHz.
<u>Explanation:</u>
As per Doppler effect, the observer will feel a decrease in the frequency of the receiving signal if the source is moving away from the observer. So the shifted frequency is obtained using the below equation:

Here , c is the speed of sound, Vs is the velocity of source with which it is moving away. f is the original frequency of source and f' is the frequency shift heard by the observer.
As here, f = 1800 Hz, Vs= 6 m/s and c = 343 m/s, then

So, the frequency of bird chirping hear by hiran will be 1.77 kHz.
Answer:
v = 45.37 m/s
Explanation:
Given,
angle of inclination = 8.0°
Vertical height, H = 105 m
Initial K.E. = 0 J
Initial P.E. = m g H
Final PE = 0 J
Final KE = 
Using Conservation of energy




v = 45.37 m/s
Hence, speed of the skier at the bottom is equal to v = 45.37 m/s
The answer is letter C.Weight (on Earth) is the force due to the mass of Earth attracting whatever mass is subject of discussion.
The force of attraction between any two masses is called Newton's Law of Universal Gravitation:


is simply a given constant.
If we're at the surface of Eath,

refers to the mass of the Earth,

to the mass of whatever is on the surface of Earth, and

to the radius of Earth.
Normally, we define a constant

to be equal to

; in which

is the mass of Earth and

the radius of earth;

happens to be around 9.8.
By that, we adapt the Law of Universal Gravitation to objects on the surface of Earth, we call that force Weight.

As you can see, weight is directly proportional to mass, more mass implies more weight.