Answer:
distance/ kinetic
Explanation:
According to the work energy theorem, the work done by all forces is equal to the change in kinetic energy of the body.
So, As the force is applied in the same direction of the distance traveled,so only the kinetic energy of the body changes as after application of force, the speed of the body changes.
Answer:
is a sign of a chemical change
Explanation:
The tablet reacts with the water to form carbon dioxide
Complete Question
The spaceship Intergalactica lands on the surface of the uninhabited Pink Planet, which orbits a rather average star in the distant Garbanzo Galaxy. A scouting party sets out to explore. The party's leader–a physicist, naturally–immediately makes a determination of the acceleration due to gravity on the Pink Planet's surface by means of a simple pendulum of length 1.08m. She sets the pendulum swinging, and her collaborators carefully count 101 complete cycles of oscillation during 2.00×102 s. What is the result? acceleration due to gravity:acceleration due to gravity: m/s2
Answer:
The acceleration due to gravity is
Explanation:
From the question we are told that
The length of the simple pendulum is 
The number of cycles is 
The time take is
Generally the period of this oscillation is mathematically evaluated as

substituting values


The period of this oscillation is mathematically represented as

making g the subject of the formula we have
![g = \frac{L}{[\frac{T}{2 \pi } ]^2 }](https://tex.z-dn.net/?f=g%20%3D%20%5Cfrac%7BL%7D%7B%5B%5Cfrac%7BT%7D%7B2%20%5Cpi%20%7D%20%5D%5E2%20%7D)

Substituting values

Answer:
α = 1.32 rad/s²
Explanation:
given,
diameter of the bicycle = 0.8 m
radius of the bicycle = 0.4 m
initial speed of the bicyclist,u = 0 m/s
final speed of the bicyclist,v = 22 Km/h = 22 x 0.278
= 6.12 m/s
time,t = 11.6 s
acceleration =
=
=0.53 m/s²
we know,
a = α r


α = 1.32 rad/s²
the angular acceleration of the wheels is equal to α = 1.32 rad/s²
Answer:
σ = 1.09 mm
Explanation:
<u>Step 1:</u> Identify the given parameters
rod diameter = 20 mm
stiffness constant (k) = 55 MN/m = 55X10⁶N/m
applied force (f) = 60 KN = 60 X 10³N
young modulus (E) = 200 Gpa = 200 X 10⁹pa
<u>Step 2:</u> calculate length of the rod, L



d = 20-mm = 0.02 m

A = 0.0003 m²


L = 1.14 m
<u>Step 3:</u> calculate the displacement of the rod, σ


σ = 0.00109 m
σ = 1.09 mm
Therefore, the displacement at the end of A is 1.09 mm