First, calculate for the distance between the given points A and B by using the equation,
<span> D = sqrt ((x2 – x1)2 + (y2 – y1)2)</span>
Substitute the known values:
<span> D = sqrt((9 – 2)2 + (25 – 1)2)</span>
<span> D = 25 m</span>
I assume the unknown here is the time it would require for the particle to move from point A to B. This can be answered by dividing the calculated distance by the speed given above.
<span> t = (25 m)/ (50 m/s) = 0.5 s</span>
<span>Thus, it will take 0.5s for the particle to complete the route. </span>
Answer: My initial velocity is 5 m/s.
Explanation:
In this case, momentum can be conserved.
initial momentum = final momentum
Since both the bodies come to rest after collision,
Final momentum = 0
Let my velocity be v, and mass, m1 = 60 kg
Friend's mass, m2 = 100 kg
Friend's velocity, v2 = 3 m/s
Intial momentum = m1v + m2v2
= 60v + 300
Conserving momentum,
60v + 300 = 0
v= -5 m/s
( Negative sign indicates that me and my friend are moving in opposite directions that is towards each other)
Answer:
The total resistance is 106 Ω and the current in the circuit is 0.11 A.
Explanation:
Given that,
Voltage of the battery, V = 12 V
Resistors 34 Ω, 42Ω, and 30Ω are connected in series.
The total resistance is given by :}
R = 34 + 42 +30
= 106Ω
Let I is the total current in the circuit. Using ohm's law to find it such that,

Hence, the total resistance is 106 Ω and the current in the circuit is 0.11 A.
A false positive<span> is a conclusion that some effect occurred when in fact it did not. hope it helped but i am not 100%
</span>
3.5 meters per second second is the acceleration because we know that acceleration is change in velocity over time and the change is velocity here is 35 and the time is 10 so we can simply divide 35 by 10 which is 3.5 m/s squared