Answer:
SO42 - Trigonal planar ion
Explanation:
The SO4^2- ion is tetrahedral and not trigonal planar because the sulphur atom has four regions of electron density which includes the lone pair of electrons on sulphur atom.
This accounts for the observed tetrahedral arrangement of electron pairs around the central sulphur atom in SO4^2- ion, hence the answer.
Answer:
0.302L
Explanation:
<em>...97.1mL of 1.21m M aqueous magnesium fluoride solution</em>
<em />
In this problem the chemist is disolving a solution from 1.21mM = 1.21x10⁻³M, to 389μM = 389x10⁻⁶M. That means the solution must be diluted:
1.21x10⁻³M / 389x10⁻⁶M = 3.11 times
As the initial volume of the original concentration is 97.1mL, the final volume must be:
97.1mL * 3.11 = 302.0mL =
0.302L
Answer:
Explanation:
In the solution of AB , they are split to give ions as follows
AB ⇄ A⁺ + B⁻
Product of concentration of A⁺ and B⁻ in saturated solution of AB is constant .
This is called Ksp
Ksp = [A⁺] [ B⁻]
If product of concentration of A⁺ and B⁻ exceeds Ksp , the equilibrium shifts to the left side and excess ions come out of solution in the form of precipitate. So second option is the answer.
Answer:
hhjcioz xlioyudiyyxyisrupautwtritu regards Roy
Answer:
the heat rate required to cool down the gas from 535°C until 215°C is -2.5 kW.
Explanation:
assuming ideal gas behaviour:
PV=nRT
therefore
P= 109 Kpa= 1.07575 atm
V= 67 m3/hr = 18.6111 L/s
T= 215 °C = 488 K
R = 0.082 atm L /mol K
n = PV/RT = 109 Kpa = 1.07575 atm * 18.611 L/s /(0.082 atm L/mol K * 488 K)
n= 0.5 mol/s
since the changes in kinetic and potencial energy are negligible, the heat required is equal to the enthalpy change of the gas:
Q= n* Δh = 0.5 mol/s * (- 5 kJ/mol) =2.5 kW