Answer:
The magnitude of the acceleration of the elevator is 0.422 m/s²
Explanation:
Lets explain how to solve the problem
Due to Newton's Law ∑ Forces in direction of motion is equal to mass
multiplied by the acceleration
We have here two forces 460 N in direction of motion and the weight
of the person in opposite direction of motion
The weight of the person is his mass multiplied by the acceleration of
gravity
→ W = mg , where m is the mass and g is the acceleration of gravity
→ m = 45 kg and g = 9.8 m/s²
Substitute these values in the rule above
→ W = 45 × 9.8 = 441 N
The scale reads 460 N
→ F = 460 N , W = 441 N , m = 45 kg
→ F - W = ma
→ 460 - 441 = 45 a
→ 19 = 45 a
Divide both sides by 45
→ a = 0.422 m/s²
<em>The magnitude of the acceleration of the elevator is 0.422 m/s²</em>
(This is from experience so sorry if it's wrong but) When wind instruments are played, sometimes the notes go flat or sharp depending on the speed the player blows air into the instrument as well as the warmth of the air. When playing a string instrument, the pitch can be changed in many ways. For example, when the player places their fingers on the string depending on which part of the tip of the finger you use, the tone of the sound and sometimes the pitch, changes. Looking at the question in a different way, you can change the pitch and the range of notes you can reach on the instrument (both wind and string) by changing the note you tune your instrument to. Hope this helps!!
Answer:
D) The variable shown by letter C would result in a movement of the object to the right.
Explanation:
Answer:
0.5
Explanation:
calculating the total resistance for the both the parallel and the series resistors then later using the ohm's law formulae V=IR to calculate current.