Answer: The formula of the hydrate will be
and the name of the compound is copper sulphate heptahydrate.
Explanation:
Water of crystallisation is the number of water molecules that combine chemically in definite molecular proportion with the concerned salt in the crystalline state.
The formula of the hydrate will be
and the name of the compound is copper (II) sulphate heptahydrate as there are 7 molecules of water.
Yes, It is important to know the volume of Unknown acid or base to be titrated.
Titration is carried out in order to find out the concentration (i.e. molarity) of unknown acid or base. In this process a standard solution of acid or base is taken and is titrated with known volume of of titrant. At end point (neutralization) the amount of standard titrant utilized is calculated and following formula is employed to calculate the unknown concentration of unknown solution.
M₁V₁/n₁ = M₂V₂/n₂
Answer:
rising pressure and decreasing temperature
Explanation:
Reversible reactions have a bit practical interest, but in some cases the technological benefit or profitability of production requires a shift in the equilibrium of a reversible reaction.
Increasing pressure
With increasing pressure on this system, the concentration of substances increases. In this case, the balance will shift towards smaller volumes. On the left side of the equation, two volumes of nitrogen react with one volume of hydrogen. On the right side of the equation there are two volumes of ammonia, i.e. the number of volumes on the right side of the equilibrium reaction is less than on the left and, therefore, with increasing pressure, the reaction equilibrium will shift to the right.
Decreasing temperature
When the temperature rises, the equilibrium shifts towards the endothermic reaction, and when the temperature decreases, towards the exothermic reaction and the reaction given above is the exothermic.
The balanced chemical equation that illustrates this reaction is:
<span>C2H4 + 3O2 --> 2CO2 + 2H2O
</span>
From the periodic table:
mass of carbon = 12 grams
mass of hydrogen = 1 gram
Therefore:
molar mass of C2H4 = 12(2) + 4(1) = 24 + 4 = 28 grams
number of moles = mass / molar mass
number of moles of C2H4 = 54.7 / 28 = 1.95 moles
From the balanced equation above:
3 moles of oxygen are required to react with one mole of C2H4, therefore, to know the number of moles required to react with 1.95 moles of C2H4, all you have to do is cross multiplication as follows:
number of oxygen moles = (1.95*3) / 1 = 5.85 moles
Answer:
1.46g of PbCrO₄ are the theoretical yield
Explanation:
Theoretical yield is defined as the maximum amount of products that could be produced (Assuming a yield of 100%).
The reaction of Lead (II) nitrate with sodium chromate is:
Pb(NO₃)₂(aq) + Na₂CrO₄(aq) → PbCrO₄(s) + 2NaNO₃ (aq)
First, we need to find molar mass of each reactant in order to determine limiting reactant (As the reaction is 1:1, the reactant with the lower number of moles is the limiting reactant). The moles of the limiting reactant = moles of Lead (II) chromate (The precipitate):
<em>Moles Pb(NO₃)₂ -Molar mass: 331.21g/mol-</em>
1.50g * (1mol / 331.21g) = 4.53x10⁻³ moles Pb(NO₃)₂
<em>Moles Na₂CrO₄ -Molar mass: 161.98g/mol-</em>
1.75g * (1mol / 161.98g) = 0.0108 moles
Pb(NO₃)₂ is limiting reactant and moles of PbCrO₄ are 4.53x10⁻³ moles. The mass is:
4.53x10⁻³ moles PbCrO₄ * (323.19g / mol) =
<h3>1.46g of PbCrO₄ are the theoretical yield</h3>