Ammonium hydroxide aka ammonia is a colorless gas that smells awful.... ammonia contains nitrogen and hydrogen.... and also ammonia is used as a lifting gas, which means it cans be used to lift hot air balloons.... lol that was just a weird fact..... but have an amazing day/night and god bless u!
To determine molecular formula, we first need to find out its empirical formula,
Carbon. Hydrogen. Nitrogen. Oxygen
Mass. 49.98g. 5.19g. 28.85g. 16.48g
Mole. 4.165. 5.19. 2.06. 1.03
Divide 4. 5. 2. 1
by
smallest
So by comparing the mole ratio from the table above, i hope u understand the table
The empirical formula is C4H5N2O
given molecular mass = 194.19g
so
(C4H5N2O) n= 194.19
(48+5+28+16)n=194.19
n= 2
molecular formula = C8H10N4O2
Assuming the concentration of stock solution is 50% sodium phosphate buffer solution, the volume of stock solution required is 6 mL and the volume of water required is 6 mL.
<h3>What volume of a stock Sodium phosphate buffer and water is needed to 12 mL of 25% sodium phosphate buffer of pH 4?</h3>
The process of preparing solutions from stock solutions of higher concentration is known as dilution.
Dilution is done with the aid of the dilution formula given below:
where
- C1 is the concentration of stock solution
- V1 is the volume of stock solution required to prepare a diluted solution
- C2 is the concentration of the diluted solution prepared
- V2 is the final volume of the diluted solution
From the data provided:
C1 is not given
V1 is unknown
C2 = 25%
V2 = 12 mL
- Assuming C1 is 50% solution
Volume of stock, V1, required is calculated as follows:
V1 = C2V2/C1
V1 = 25 × 12 /50
V1 = 6 mL
Therefore, the volume of stock solution required is 6 mL and the volume of water required is 6 mL.
Learn more about dilution formula at: brainly.com/question/7208546
Answer:
The answer is "Choice A and Choice B"
Explanation:
The Zero-Order reactions are usually found if a substrate, like a surface or even a catalyst, is penetrated also by reactants. Its success rate doesn't depend mostly on the amounts of the various reaction in this reaction.
Let the Rate = k
As
doesn't depend on reaction rate, a higher reaction rate does not intensify the reaction.
By the rate
the created based and the reaction rate is about the same.
The correct answer for the question that is being presented above is this one: Right now, I haven't seen the poster but there are things that i have in mind. It can be "The Game of Acids and Bases," or you can another one like, "Unity Amidst Diversity."