I think that would be c) mirror because mirrors reflects light and can't create it.
Answer:
The heat transferred through the wall that day is 13728 BTUs
Explanation:
Here, we have the area of the wall given as
Area of wall = 2 × Length × Height + 2 × Width × Height
Length = 15 feet
Width = 11 Feet and
Height = 9 feet
Therefore, the area = 2×15×9 + 2×11×9 = 468 ft²
Temperature difference is given by
Average outside temperature - Wall temperature = 40 - 18 = 22 °F
Therefore the heat transferred through the wall that day (24 hours) at 18 sq.ft. hr/BTU is given by;
468 × 22 × 24/18 = 13728 = 13728 BTUs.
<h2>Answer: about the same size of the gap or slit</h2>
Diffraction happens when a wave (mechanical or electromagnetic wave, in fact, any wave) meets an obstacle or a slit .When this occurs, the wave bends around the corners of the obstacle or passes through the opening of the slit that acts as an obstacle, forming multiple patterns with the shape of the aperture of the slit.
Note that the principal condition for the occurrence of this phenomena is that the obstacle must be comparable in size (similar size) to the size of the wavelength.
In other words, when the gap (or slit) size is larger than the wavelength, the wave passes through the gap and does not spread out much on the other side, but when the gap size is equal to the wavelength, maximum diffraction occurs.
Therefore:
<h2>Waves diffract the most when their wavelength is <u>about the same size of the gap
</u></h2>
<u />
Answer:
a
The speed of wave is 
b
The new speed of the two waves is 
Explanation:
From the question we are told that
The mass of the string is 
The length is 
The tension is 
Now the velocity of the first wave is mathematically represented as

Where
is the linear density which is mathematically represented as

substituting values


So


Now given that the Tension, mass and length are constant the velocity of the second wave will same as that of first wave (reference PHYS 1100 )
Answer:
The wavelength of the emitted radiation is inversely proportional to its frequency, or λ = c/ν. The value of Planck's constant is defined as 6.62607015 × 10−34 joule∙second.
Explanation:
Planck's quantum theory. According to Planck's quantum theory, Different atoms and molecules can emit or absorb energy in discrete quantities only. The smallest amount of energy that can be emitted or absorbed in the form of electromagnetic radiation is known as quantum.
Hope this helps!