1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
umka21 [38]
3 years ago
12

Define volume flow rate Q of air flowing in a duct of area A with average velocity V

Engineering
1 answer:
Shalnov [3]3 years ago
3 0

Answer:

The volume flow rate of air is Q=A\times V

Explanation:

A random duct is shown in the below attached figure

The volume flow rate is defined as the volume of fluid that passes a section in unit amount of time

Now by definition of velocity we can see that 'v' m/s means that in 1 second the flow occupies a length of 'v' meters

From the attached figure we can see that

The volume of the prism that the flow occupies in 1 second equals

Volume=Area\times V=A\times V

Hence the volume flow rate is Q=V\times A

You might be interested in
For a cylindrical annulus whose inner and outer surfaces are maintained at 30 ºC and 40 ºC, respectively, a heat flux sensor mea
miskamm [114]

Answer:

k=0.12\ln(r_2/r_1)\frac {W}{ m^{\circ} C}

where r_1 and r_2 be the inner radius, outer radius of the annalus.

Explanation:

Let r_1, r_2 and L be the inner radius, outer radius and length of the given annulus.

Temperatures at the inner surface, T_1=30^{\circ}C\\ and at the outer surface, T_2=40^{\circ}C.

Let q be the rate of heat transfer at the steady-state.

Given that, the heat flux at r=3cm=0.03m is

40 W/m^2.

\Rightarrow \frac{q}{(2\pi\times0.03\times L)}=40

\Rightarrow q=2.4\pi L \;W

This heat transfer is same for any radial position in the annalus.

Here, heat transfer is taking placfenly in radial direction, so this is case of one dimentional conduction, hence Fourier's law of conduction is applicable.

Now, according to Fourier's law:

q=-kA\frac{dT}{dr}\;\cdots(i)

where,

K=Thermal conductivity of the material.

T= temperature at any radial distance r.

A=Area through which heat transfer is taking place.

Here, A=2\pi rL\;\cdots(ii)

Variation of temperature w.r.t the radius of the annalus is

\frac {T-T_1}{T_2-T_1}=\frac{\ln(r/r_1)}{\ln(r_2/r_1)}

\Rightarrow \frac{dT}{dr}=\frac{T_2-T_1}{\ln(r_2/r_1)}\times \frac{1}{r}\;\cdots(iii)

Putting the values from the equations (ii) and (iii) in the equation (i), we have

q=\frac{2\pi kL(T_1-T_2)}{\LN(R_2/2_1)}

\Rightarrow k= \frac{q\ln(r_2/r_1)}{2\pi L(T_2-T_1)}

\Rightarrow k=\frac{(2.4\pi L)\ln(r_2/r_1)}{2\pi L(10)} [as q=2.4\pi L, and T_2-T_1=10 ^{\circ}C]

\Rightarrow k=0.12\ln(r_2/r_1)\frac {W}{ m^{\circ} C}

This is the required expression of k. By putting the value of inner and outer radii, the thermal conductivity of the material can be determined.

7 0
3 years ago
What is a system that performs different functions according to a fixed schedule?
geniusboy [140]

<u>I'm pretty sure your answer is B, because Sequential Control operates during order like a schedule</u>

Sequential Control=A control system in which the individual steps are processed in a predetermined order, progression from one sequence step to the next being dependent on defined conditions being satisfied.

Tell me if I'm incorrect but, Hope this helps!

4 0
3 years ago
Read 2 more answers
Which option identifies the next step in the following scenario?
Whitepunk [10]

Answer: The engineer will create a detailed sketch that labels all of the visual components.

Explanation:

It should be noted that the reverse engineering is required for the replacement and the modification of an existing product.

With regards to the question, the correct answer is option A "The engineer will create a detailed sketch that labels all of the visual components".

4 0
3 years ago
Given the following phasors and the information related to the frequency of that phasor, provide the corresponding time-domain r
Evgesh-ka [11]

Answer:

Explanation:

In Engineering and Physics a Phasor That is a portmanteau of phase vector, is a complex number that represents a sinusoidal function whose Amplitude (A), Angular Frequency (ω), and Initial Phase (θ) are Time-invariant.

For the step by step solution to the question you asked, go through the attached documents.

4 0
3 years ago
What is didactic apparatus?​
Soloha48 [4]
Didactic apparatus is a method of teaching in which scientific approach is follow in order to present the information to the student. This method effectively teaches the student with the required theoretical knowledge .
8 0
3 years ago
Other questions:
  • Main technologies used in atms vending machines game consoles and microwave ovens
    6·1 answer
  • Find the time-domain sinusoid for the following phasors:_________
    6·1 answer
  • When you first start a car after it has been sitting for more than an hour, it pollutes up to ......times more than when the eng
    7·2 answers
  • Plot the following trig functions using subplots, choosing an appropriate layout for the number of functions displayed. The subp
    8·1 answer
  • A poundal is the force required to accelerate a mass of 1 lbm at a rate of 1 ft/(s^2). Determine the acceleration of an object o
    10·1 answer
  • Often an attacker crafts e-mail attacks containing malware designed to take advantage of the curiosity or even greed of the reci
    14·1 answer
  • A plane wall of thickness 2L = 40 mm and thermal conductivity k = 5 W/m K experiences uniform volumetric heat generation at a ra
    15·1 answer
  • An aggregate blend is composed of 55% aggregate A (Sp. Gr. 2.631), 25% aggregate B (Sp. Gr. 2.331) and 20% sand (Sp. Gr. 2.609).
    8·1 answer
  • These are the most widely used tools and most often abuse tool​
    15·2 answers
  • What is the least count of screw gauge?<br> (a) 0.01 cm<br> (b) 0.001 cm<br> (c) 0.1 cm<br> (d) 1 mm
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!