You could search it sorry I didn’t fiv you the answer
Answer: Your question has some missing figures so kindly plug in the values into the solution provided to get the exact amount of money saved
answer : Electric power generated = 216 * 10^6 kJ
money saved = $0.XY * 60000 kwh
Explanation:
<u>Calculating the amount of electric power generated by wind turbine</u>
power generated = ( 30 * 2000 ) kWh = 60000 kWh
Electric energy generated = 60000 kWh * 3600 kJ = 216 * 10^6 kJ
<u>Calculate money saved by school per year </u>
$0.XY * 60000 kwh
Answer:
See explanation
Explanation:
Given:
Initial pressure,
p
1
=
15
psia
Initial temperature,
T
1
=
80
∘
F
Final temperature,
T
2
=
200
∘
F
Find the gas constant and specific heat for carbon dioxide from the Properties Table of Ideal Gases.
R
=
0.04513
Btu/lbm.R
C
v
=
0.158
Btu/lbm.R
Find the work done during the isobaric process.
w
1
−
2
=
p
(
v
2
−
v
1
)
=
R
(
T
2
−
T
1
)
=
0.04513
(
200
−
80
)
w
1
−
2
=
5.4156
Btu/lbm
Find the change in internal energy during process.
Δ
u
1
−
2
=
C
v
(
T
2
−
T
1
)
=
0.158
(
200
−
80
)
=
18.96
Btu/lbm
Find the heat transfer during the process using the first law of thermodynamics.
q
1
−
2
=
w
1
−
2
+
Δ
u
1
−
2
=
5.4156
+
18.96
q
1
−
2
=
24.38
Btu/lbm
Answer:
Rate of Entropy =210.14 J/K-s
Explanation:
given data:
power delivered to input = 350 hp
power delivered to output = 250 hp
temperature of surface = 180°F
rate of entropy is given as

T = 180°F = 82°C = 355 K
Rate of heat = (350 - 250) hp = 100 hp = 74600 W
Rate of Entropy
Answer:
Explanation:
f = 50.0 Hz, L = 0.650 H, π = 3.14
C = 4.80 μF, R = 301 Ω resistor. V = 120volts
XL = wL = 2πfL
= 2×3.14×50* 0.650
= 204.1 Ohm
Xc= 1/wC
Xc = 1/2πfC
Xc = 1/2×3.14×50×4.80μF
= 1/0.0015072
= 663.48Ohms
1. Total impedance, Z = sqrt (R^2 + (Xc-XL)^2)= √ 301^2+ (663.48Ohms - 204.1 Ohm)^2
√ 90601 + (459.38)^2
√ 90601+211029.98
√ 301630.9844
= 549.209
Z = 549.21Ohms
2. I=V/Z = 120/ 549.21Ohms =0.218Ampere
3. P=V×I = 120* 0.218 = 26.16Watt
Note that
I rms = Vrms/Xc
= 120/663.48Ohms
= 0.18086A
4. I(max) = I(rms) × √2
= 0.18086A × 1.4142
= 0.2557
= 0.256A
5. V=I(max) * XL
= 0.256A ×204.1
=52.2496
= 52.250volts
6. V=I(max) × Xc
= 0.256A × 663.48Ohms
= 169.85volts
7. Xc=XL
1/2πfC = 2πfL
1/2πfC = 2πf× 0.650
1/2×3.14×f×4.80μF = 2×3.14×f×0.650
1/6.28×f×4.8×10^-6 = 4.082f
1/0.000030144× f = 4.082×f
1 = 0.000030144×f×4.082×f
1 = 0.000123f^2
f^2 = 1/0.000123048
f^2 = 8126.922
f =√8126.922
f = 90.14 Hz